Правильный многогранник или плато́ново тело — это выпуклый многогранник, грани которого являются равными правильными многоугольниками, обладающий пространственной симметрией следующего типа: все многогранные углы при его вершинах правильные и равны друг другу.
Пра́вильный икоса́эдр — правильный выпуклый многогранник, двадцатигранник, одно из платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.
Окта́эдр — многогранник с восемью гранями.
Звёздчатый многогра́нник — невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников, грани попарно соединяются в рёбрах.
Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся 2 шестиугольника и пятиугольник. Каждый из пятиугольников со всех сторон окружён шестиугольниками.
Ромботриаконта́эдр — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.
Большой икосаэдр — 45-я звёздчатая форма икосаэдра. Его символ Шлефли — . Это означает, что у него 5 треугольников с чередованием вершин сходятся в каждой вершине. Двойственный многогранник к нему — большой звёздчатый додекаэдр.
Ехидна́эдр — последняя звёздчатая форма икосаэдра, также называют полной или завершающей формой икосаэдра, так как она включает в себя все ячейки звёздчатой диаграммы икосаэдра.
Соединение пяти тетраэдров — 12-я звёздчатая форма икосаэдра. Не является зеркально-симметричным и имеет левую и правую формы.
Тело Кеплера — Пуансо — тело, представляющее собой правильный звёздчатый многогранник, не являющийся соединением платоновых и звёздчатых тел.
Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.
Пятьдесят девять икосаэдров — это книга, написанная и проиллюстрированная Гарольдом Коксетером, Патриком дю Валем, Х. Т. Флазером и Дж. Ф. Петри. В книге перечислены некоторые звёздные формы правильных выпуклых (платоновых) икосаэдров, построенных согласно набору правил, предложенных Дж. Ч. П. Миллером.
Пятиугольная антипризма — третья в бесконечном ряду антипризм, образованная чётным набором треугольных сторон и закрыта с обеих сторон двумя многоугольниками. Состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
Малый звёздчатый додекаэдр — тело Кеплера — Пуансо, с символом Шлефли {5/2,5}. Многограннику дал имя Артур Кэли. Многогранник является одним из четырёх невыпуклых правильных многогранников. Он состоит из 12 граней в виде пентаграмм с пятью пентаграммами, сходящимися в каждой вершине.
Образование звёздчатой формы — процесс расширения многоугольника, или многогранника в пространствах размерности 3 и выше с образованием новой фигуры.
Большой звёздчатый додекаэдр — это тело Кеплера — Пуансо с символом Шлефли {5/2,3}. Многогранник является одним из четырёх невыпуклых правильных многогранников.
Икосаэдр — это многогранник с 20 гранями.
В геометрии большой триамбикикосаэдр и средний триамбикикосаэдр являются визуально идентичными двойственными однородными многогранниками. Внешняя поверхность также представляет собой звездообразную форму икосаэдра. Эти фигуры можно отличить, отметив, какие пересечения между ребрами являются истинными вершинами, а какие нет. На приведенных изображениях истинные вершины отмечены золотыми сферами, которые можно увидеть в вогнутых Y-образных областях. В качестве альтернативы, если грани заполнены по правилу «четно-нечетно», внутренняя структура обеих фигур будет отличаться.