
Масс-спектрометрия — метод исследования и идентификации вещества, позволяющий определять концентрацию различных компонентов в нём. Основой для измерения служит ионизация компонентов, позволяющая физически различать компоненты на основе характеризующего их отношения массы к заряду и, измеряя интенсивность ионного тока, производить отдельный подсчёт доли каждого из компонентов.
Спектр в физике — скалярная функция частоты
, длины волны
или, реже, другой физической величины, определяющая «относительную представленность» значений данной величины в изучаемом объекте: сложном сигнале, многокомпонентной среде и прочем. С точностью до нормировки совпадает с плотностью или рядом распределения соответствующей величины. В составных понятиях, например спектр поглощения или спектр испускания, слово спектр по сути означает «спектральный состав» изучаемого явления.

Химическая ионизация — один из методов ионизации анализируемой среды, применямых в масс-спектрометрии. Был впервые предложен Бёрнаби Мансоном и Франком Филдом в 1966 году. Теоретические основы химической ионизации являются разделом ионно-молекулярной химии. Молекулы газа-реагента подвергаются электронной ионизации с образованием ионов реагента, которые затем реагируют с молекулами анализируемого вещества с образованием ионов анализируемого вещества, пригодного для масс-спектрометрического анализа. Основанная на химической ионизации масс-спектрометрия находит применение при идентефикации и определении структурного и химического состава а также полезна в биохимическом анализе. Образцы анализируемого вещества должны быть в газообразной фазе или, если это жидкие или твёрдые вещества, образцы должны быть испарены перед введением в анализатор.
Времяпролётный масс-анализа́тор — простейший вид масс-анализатора.

Аналити́ческая хи́мия — наука, развивающая теоретические основы химического анализа веществ и материалов и разрабатывающая методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления химического состава веществ. Проведение химического анализа в настоящее время заключается в получении информации о составе и природе вещества.

Растровый электронный микроскоп (РЭМ) или сканирующий электронный микроскоп (СЭМ) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым объектом.

Спектро́метр — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов. Анализируемый спектр получается путём регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением. Обычно измеряемыми величинами являются интенсивность и энергия излучения, но могут регистрироваться и другие характеристики, например, поляризационное состояние. Термин «спектрометр» применяется к приборам, работающим в широком диапазоне длин волн: от гамма до инфракрасного диапазона.

Элементный анализ — качественное обнаружение и количественное определение содержания элементов и элементного состава веществ, материалов и различных объектов. Это могут быть жидкости, твёрдые материалы, газы и воздух. Элементный анализ позволяет ответить на вопрос — из каких атомов (элементов) состоит анализируемое вещество.

Инфракра́сная спектроскопи́я — раздел спектроскопии, изучающий взаимодействие инфракрасного излучения с веществами.
Ла́зерная абля́ция — метод удаления вещества с поверхности лазерным импульсом. При низкой мощности лазера вещество испаряется или сублимируется в виде свободных молекул, атомов и ионов, то есть над облучаемой поверхностью образуется слабая плазма, обычно в данном случае тёмная, не светящаяся. При плотности мощности лазерного импульса, превышающей порог режима абляции, происходит микро-взрыв с образованием кратера на поверхности образца и светящейся плазмы вместе с разлетающимися твёрдыми и жидкими частицами (аэрозоля). Режим лазерной абляции иногда также называется лазерной искрой.
Рентгеноспектра́льный ана́лиз — инструментальный метод элементного анализа, основанный на изучении спектра рентгеновских лучей, прошедших сквозь образец или испущенных им.
Масс-спектрометрия с индуктивно-связанной плазмой (ИСП-МС) — это разновидность масс-спектрометрии, отличающаяся высокой чувствительностью и способностью определять ряд металлов и нескольких неметаллов в концентрациях до 10−10%, т.e. одну частицу из 1012. Метод основан на использовании индуктивно-связанной плазмы в качестве источника ионов и масс-спектрометра для их разделения и детектирования. ИСП-МС также позволяет проводить изотопный анализ выбранного иона.
Атомно-эмиссионная спектроскопия (спектрометрия), АЭС или атомно-эмиссионный спектральный анализ — совокупность методов элементного анализа, основанных на изучении спектров испускания свободных атомов и ионов в газовой фазе. Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн от ~200 до ~1000 нм.
Матрично-активированная лазерная десорбция/ионизация, МАЛДИ — десорбционный метод «мягкой» ионизации, обусловленной воздействием импульсами лазерного излучения на матрицу с анализируемым веществом. Матрица представляет собой материал, свойства которого обуславливают понижение деструктивных свойств лазерного излучения и ионизацию анализируемого вещества. МАЛДИ масс-спектрометрия находит своё широкое применение для анализа нелетучих высокомолекулярных соединений
Масс-спектрометрия с прямой лазерной десорбцией — десорбционный метод ионизации, обусловленной воздействием лазерного излучения на поверхность нелетучей пробы. Термин «лазерная десорбция» используется в тех случаях, когда лазерное воздействие на поверхность образца ограничено лишь десорбцией молекул, молекулярных радикалов и молекулярных ионов. Если же мощность лазерного излучения достаточна для диссоциации и ионизации продуктов лазерного воздействия, то есть формирования пара атомарных ионов над поверхностью образца, в этом случае такая методика обычно называется лазерно-искровая масс-спектрометрия (ЛИМС) или просто лазерная микромасс-спектрометрия.
Десорбционные методы ионизации в масс-спектрометрии — группа методов ионизации в масс-спектрометрии, для которых процессы десорбции твердого анализируемого вещества и его ионизации практически неотделимы во времени.
Лазерно-искровая эмиссионная спектрометрия (ЛИЭС) — один из методов атомно-эмиссионного спектрального анализа, в котором используют спектры плазмы лазерного пробоя для анализа твёрдых образцов, жидкостей, газовых сред, взвешенной пыли и аэрозолей. В англоязычной литературе данный метод именуют Laser-Induced Breakdown Spectroscopy или Laser-Induced Plasma Spectroscopy.

Рентгеновская фотоэлектронная спектроскопия (РФЭС) — полуколичественный спектроскопический метод исследования элементного состава, химического и электронного состояния атомов на поверхности изучаемого материала. Он основан на явлении внешнего фотоэффекта. Спектры РФЭС получают облучением материала пучком рентгеновских лучей с регистрацией зависимости количества испускаемых электронов от их энергии связи. Исследуемые электроны эмиттируются по всей глубине проникновения используемого мягкого рентгеновского излучения в исследуемый образец. Однако, выбитые рентгеновскими квантами электроны сильно поглощаются исследуемым веществом настолько, что эмиттированные на глубине около 100 Å они уже не могут достичь поверхности, испуститься в вакуум и, соответственно, быть детектированными прибором. Именно поэтому методом РФЭС можно собрать информацию о самых верхних атомных слоях образца без информации об его объёме. Поэтому этот метод незаменим, как метод анализа и контроля в ряде отраслей таких, как полупроводниковая индустрия, гетерогенный катализ и т. д.

Оже-спектроскопия — метод электронной спектроскопии, основанный на анализе распределения по энергии электронов, возникших в результате Оже-эффекта.

Фурье́-спектроскопи́я — совокупность методов измерений спектров различной природы, в которых спектр вычисляется не по интенсивности сигнала, как например, в призменных спектроскопах, а по отклику во временной или пространственной области.