Едини́чная ма́трица — квадратная матрица размера (порядка) , элементы главной диагонали которой равны единице поля, а остальные равны нулю.
Те́нзор — применяемый в математике и физике математический объект линейной алгебры, заданный на векторном пространстве конечной размерности. В физике в качестве векторного пространства обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты (проекции) взаимосвязанных физических величин. Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счёт сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчёта.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Система линейных алгебраических уравнений — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Метод Гаусса — Жордана — метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Матрица достижимости простого ориентированного графа — бинарная матрица замыкания по транзитивности отношения . Таким образом, в матрице достижимости хранится информация о существовании путей между вершинами орграфа.
Ма́трица перестано́вки — квадратная бинарная матрица, в каждой строке и столбце которой находится ровно один единичный элемент. Каждая матрица перестановки размера является матричным представлением перестановки из элементов.
Алгоритм «прямого-обратного» хода — алгоритм для вычисления апостериорных вероятностей последовательности состояний при наличии последовательности наблюдений. Иначе говоря, алгоритм, вычисляющий вероятность специфической последовательности наблюдений. Алгоритм применяется в трёх алгоритмах скрытых Марковских моделей.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Матричные популяционные модели — это особый тип популяционных моделей, использующий матричную алгебру. Популяционные модели используются в популяционной экологии для моделирования динамики популяций животных или человека. Матричная алгебра, в свою очередь, является способом записи большого количества повторяющихся и громоздких алгебраических вычислений (итераций).
Бикватернионы — комплексификация (расширение) обычных (вещественных) кватернионов.
Симплектическая матрица — это матрица M размера 2n×2n с вещественными элементами, которая удовлетворяет условию
Обобщённый собственный вектор матрицы — вектор, который удовлетворяет определённым критериям, которые слабее, чем критерии для (обычных) собственных векторов.
Поскольку умножение матриц является центральной операцией во многих численных алгоритмах, много усилий было вложено в повышение эффективности алгоритма умножения матриц. Приложения алгоритма умножения матриц в вычислительных задачах найдены во многих областях, включая научные вычисления и распознавания образов, а также во вроде бы не имеющих отношение к матрицам задачах, таких как подсчёт путей через граф. Было разработано много различных алгоритмов для умножения матриц на оборудовании различного типа, включая параллельные и распределённые системы, где вычисления распределены на несколько процессоров.