В математике решение уравнения — это задача по нахождению всех значений аргументов, при которых выполняется равенство. Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет вовсе.

Задача коммивояжёра — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что маршрут должен проходить через каждый город только один раз — в таком случае выбор осуществляется среди гамильтоновых циклов. Существует несколько частных случаев общей постановки задачи, в частности, геометрическая задача коммивояжёра, метрическая задача коммивояжёра, симметричная и асимметричная задачи коммивояжёра. Также существует обобщение задачи, так называемая обобщённая задача коммивояжёра.

Метод бисекции или метод деления отрезка пополам — простейший численный метод для решения нелинейных уравнений вида f(x)=0. Предполагается только непрерывность функции f(x). Поиск основывается на теореме о промежуточных значениях.
Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах
-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Задача о рюкзаке — NP-полная задача комбинаторной оптимизации. Своё название получила от конечной цели: уложить как можно большее число ценных вещей в рюкзак при условии, что вместимость рюкзака ограничена. С различными вариациями задачи о рюкзаке можно столкнуться в экономике, прикладной математике, криптографии и логистике.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.

Оптимизация — задача нахождения экстремума целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств или неравенств.

Дерево принятия решений — средство поддержки принятия решений, использующееся в машинном обучении, анализе данных и статистике. Структура дерева представляет собой «листья» и «ветки». На рёбрах («ветках») дерева решения записаны признаки, от которых зависит целевая функция, в «листьях» записаны значения целевой функции, а в остальных узлах — признаки, по которым различаются случаи. Чтобы классифицировать новый случай, надо спуститься по дереву до листа и выдать соответствующее значение.
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Задача целочисленного программирования — это задача математической оптимизации или выполнимости, в которой некоторые или все переменные должны быть целыми числами. Часто термин адресуется к целочисленному линейному программированию (ЦЛП), в котором целевая функция и ограничения линейны.
Численные (вычислительные) методы — методы решения математических задач в численном виде.
Нелинейное программирование — случай математического программирования, который не сводится к постановке задачи линейного программирования.
Информи́рованный по́иск — стратегия поиска решений в пространстве состояний, в которой используются знания, относящиеся к конкретной задаче. Информированные методы обычно обеспечивают более эффективный поиск по сравнению с неинформированными методами.

В теории оптимизации допустимая область, допустимое множество, пространство поиска или пространство решений — это множество всех возможных точек задачи оптимизации, которые удовлетворяют ограничениям задачи. Эти ограничения могут включать неравенства, равенства и требование целочисленности решения . Область допустимых решений является начальной областью поиска кандидатов в решение задачи, и эта область во время поиска может сужаться.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи. Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности равен нулю при выполнении условий регулярности ограничений.
Отбор признаков — процесс отбора подмножества значимых признаков для построения модели в машинном обучении. Отбор признаков используется по четырём причинам:
- упрощение модели для повышения интерпретируемости
- для сокращения времени обучения
- во избежание проклятия размерности
- улучшение обобщающей способности модели и борьба с переобучением.
Выпуклое программирование — это подобласть математической оптимизации, которая изучает задачу минимизации выпуклых функций на выпуклых множествах. В то время как многие классы задач выпуклого программирования допускают алгоритмы полиномиального времени, математическая оптимизация в общем случае NP-трудна.
Двойственная задача для заданной задачи линейного программирования — это другая задача линейного программирования, которая получается из исходной (прямой) задачи следующим образом:
- Каждая переменная в прямой задаче становится ограничением двойственной задачи;
- Каждое ограничение в прямой задаче становится переменной в двойственной задаче;
- Направление цели обращается – максимум в прямой задаче становится минимумом в двойственной, и наоборот.
Оптимизация с ограничениями — это процесс оптимизации целевой функции с учётом некоторых ограничений с некоторыми переменными. Целевая функция является функцией потерь, энергетической функцией, которая минимизируется, функцией вознаграждения, или функцией полезности, которая максимизируется.