
Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц высоких энергий. Самые крупные ускорители являются дорогостоящими комплексами требующими международного сотрудничества. К примеру, Большой адронный коллайдер в ЦЕРН представляющий собой кольцо длиной почти 27 километров является результатом работы десятков тысяч учёных из более чем ста стран.

Синхротронное излучение — излучение электромагнитных волн релятивистскими заряженными частицами, движущимися по криволинейной траектории, то есть имеющими составляющую ускорения, перпендикулярную скорости. Синхротронное излучение создаётся в синхротронах, накопительных кольцах ускорителей, при движении заряженных частиц через ондулятор. Частота излучения может включать очень широкий спектральный диапазон, от радиоволн до рентгеновского излучения.

Синхротро́н — один из типов резонансных циклических ускорителей. Характеризуется тем, что в процессе ускорения частиц орбита пучка остаётся постоянного радиуса, а ведущее магнитное поле поворотных магнитов, определяющее этот радиус, возрастает во времени. Кроме того, остаётся постоянной частота ускоряющего электрического поля. Понятно, что для пучков ультрарелятивистских частиц период обращения определяется только длиной орбиты, и поскольку она не изменяется, то нет необходимости изменять частоту электрического поля. Поэтому все резонансные циклические ускорители лёгких частиц, а также высокоэнергетические протонные и ионные машины, такие как LHC и Тэватрон — это синхротроны. В синхротроне достигнуты энергии около 6,5 ТэВ для протонов (LHC) и более 100 ГэВ для электронов (LEP). Дальнейшее повышение энергии в электронных синхротронах требует сильного увеличения их размеров вследствие огромных потерь энергии на излучение. Потеря энергии за один оборот пропорциональна 4-й степени энергии частиц: W ~ E4/R.

Эдвин Маттисон Макмиллан — американский физик и химик, широко известный учёный своего времени, работал в разных областях знания. Внёс значительный вклад в химию трансурановых элементов. Открыл принцип автофазировки. Создал первый электронный синхротрон, синхроциклотрон. Руководил Национальной лабораторией имени Лоуренса в 1958—1973. Нобелевская премия по химии (1951).

Циклотро́н — резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц, в котором частицы движутся в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Бетатро́н — циклический, но не резонансный ускоритель электронов с фиксированной равновесной орбитой, ускорение в котором происходит с помощью вихревого электрического поля. Предельно достижимая энергия в бетатроне: ≤ 300 МэВ.

Фазотро́н, синхроциклотро́н — циклический ускоритель тяжёлых заряженных частиц, в котором магнитное поле однородно и постоянно во времени, а частота ускоряющего электрического поля меняется.

Прото́нная терапи́я является одним из видов корпускулярной терапии, которая использует пучок протонов высокой энергии для облучения больной ткани, наиболее часто при терапии рака.

Австралийский синхротрон — ускоритель электронов на энергию 3 ГэВ, специализированный источник синхротронного излучения рентгеновского диапазона, критическая энергия фотонов 7.8 КэВ. Построен в Мельбурне, открытие состоялось 31 июля 2007 года. Синхротрон расположен в Клейтоне, пригороде Мельбурна на месте кинотеатра на колёсах, рядом с научно-исследовательскими лабораториями компании «Telstra» и через дорогу от клейтонского кампуса университета Монаша.

Ла́зер на свобо́дных электро́нах — вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе — периодической системе отклоняющих полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.
Синхрофазотро́н — резонансный циклический ускоритель с неизменной в процессе ускорения длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Последнее необходимо, чтобы пучок приходил в ускоряющую секцию всегда в фазе с высокочастотным электрическим полем. В том случае, если частицы ультрарелятивистские, частота обращения при фиксированной длине орбиты не меняется с ростом энергии, и частота ВЧ-генератора также должна оставаться постоянной. Такой ускоритель уже называется синхротроном.

Милтон Стэнли Ливингстон — американский физик, совместно с Эрнестом Лоуренсом создавший первый циклотрон (1930), автор многих пионерских работ в области физики ускорителей.

Ускоритель FFAG — тип резонансного циклического ускорителя, в котором сочетаются признаки циклотрона и современного синхротрона. Другое название FFAG — кольцевой фазотрон.

Принцип автофазировки — закон, обеспечивающий стабильность частицы в резонансном циклическом ускорителе в продольном направлении. Принцип был сформулирован В. И. Векслером (1944) и независимо Макмилланом (1945) и позволил создавать синхроциклотроны, а позже синхротроны для ускорения релятивистских частиц, что было невозможно в классическом циклотроне.

Космотро́н — циклический ускоритель протонов на рекордную для середины XX века энергию 3,3 ГэВ, первый в мире синхрофазотрон. Построен в 1948—1953 годах в Брукхейвенской национальной лаборатории (BNL), Лонг-Айленд, США.
Бирмингемский синхротрон — циклический ускоритель протонов на энергию 1 ГэВ, один из первых в мире синхротронов, построенный в Бирмингемском университете в 1953 году под руководством Марка Олифанта.
Indus-1, Indus-2 — источники синхротронного излучения в лаборатории RRCAT, Индаур, Индия.

Андре́й Никола́евич Ле́бедев — советский и российский физик, специалист в области ускорителей заряженных частиц и физики сильноточных пучков, член-корреспондент РАН (2003).

Ускоритель RFQ — тип линейного ускорителя пучков заряженных частиц, в котором поперечная устойчивость обеспечена переменным электрическим полем, совмещённым с ускоряющим продольным полем. Предложен впервые в 1969 году В.А. Тепляковым, И.М. Капчинским на Международной конференции по ускорителям в Ереване.

AWAKE в ЦЕРНе — это эксперимент для подтверждения принципа плазменного ускорения электронов с использованием пучка протонов высокой энергии в качестве драйвера, создающего кильватерный след. Его цель — ускорить сгусток электронов (витнесс) с энергией от 15 до 20 МэВ до нескольких ГэВ на небольшом расстоянии путём создания высокого темпа ускорения, до 1 ГэВ/м. Используемые в настоящее время ускорители частиц используют для ускорения стандартные или сверхпроводящие ВЧ-резонаторы, но они ограничены градиентом ускорения порядка 100 МэВ/м.