Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
Вы́рожденная ма́трица — квадратная матрица определитель которой равен нулю.
Треуго́льная ма́трица — в линейной алгебре квадратная матрица, у которой все элементы, стоящие ниже главной диагонали, равны нулю.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Специальная ортогональная группа — группа вещественных ортогональных матриц размера с определителем, равным 1. Служит группой вращений -мерного арифметического вещественного пространства.
Разложе́ние ма́трицы — представление матрицы в виде произведения матриц, обладающих некоторыми определёнными свойствами. У каждого класса матричных разложений имеется своя область применения; в частности, многие эффективные алгоритмы вычислительной линейной алгебры основаны на построении соответствующих матричных разложений.
Полная линейная группа относится к двум различным понятиям.
Проективная прямая — одномерное проективное пространство. Проективная прямая представляет собой множество прямых в 2-мерном линейном пространстве. Точки проективной прямой могут быть заданы с помощью однородных координат . Как топологическое пространство, проективная прямая представляет собой одноточечную компактификацию аффинной прямой.
Симплектическая матрица — это матрица M размера 2n×2n с вещественными элементами, которая удовлетворяет условию
Теорема Ли — Колчина — это теорема теории представлений линейных алгебраических групп. Теорема Ли является аналогом для линейных алгебр Ли.
Классификация Бьянки — классификация вещественных трёхмерных алгебр и групп Ли. Названа в честь Луиджи Бьянки, который доказал её в 1898 году.
Представление Бурау — линейное представление группы кос, введённое в 1935 году немецким математиком Вернером Бурау.