
Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Нейрокомпьютер — устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика же нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей.
Вербализа́ция — минимизированное описание работы синтезированной и уже обученной нейронной сети в виде нескольких взаимозависимых алгебраических или логических функций.
Нейрокибернетика — научное направление, изучающее основные закономерности организации и функционирования нейронов и нейронных образований. Основным методом нейрокибернетики является математическое моделирование, при этом данные физиологического эксперимента используются в качестве исходного материала для создания моделей.

Джордж Клир — американский учёный чешского происхождения, профессор Центра Интеллектуальных Систем Университета штата Нью-Йорк в Бинхэмптоне.
Под гибридной интеллектуальной системой (ГиИС) принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГиИС — это совокупность:
- аналитических моделей
- экспертных систем
- искусственных нейронных сетей
- нечётких систем
- генетических алгоритмов
- имитационных статистических моделей
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).
Вычислительный интеллект — ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании. Кроме того, вычислительный интеллект охватывает такие области как роевой интеллект, фракталы и теория хаоса, искусственная иммунная система, вейвлеты и т. д.

Мягкие вычисления — понятие, введённое Лотфи Заде в 1994 году, объединяющее в общий класс неточные, приближённые методы решения задач, зачастую не имеющих решения за полиномиальное время. Задачи, решаемые такого класса методами, возникают в области биологии, медицины, гуманитарных наук, робастного управления, менеджменте.
Нейроуправление — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных, способностью адаптироваться к изменению свойств объекта управления и внешней среды, пригодностью для синтеза нелинейных регуляторов, высокой устойчивость к повреждениям своих элементов в силу изначально заложенного в нейросетевую архитектуру параллелизма. Термин «нейроуправление», впервые был использован одним из авторов метода обратного распространения ошибки Полом Дж. Вербосом в 1976 году. Известны многочисленные примеры практического применения нейронных сетей для решения задач управление самолетом, вертолетом, автомобилем-роботом, скоростью вращения вала двигателя, гибридным двигателем автомобиля, электропечью, турбогенератором, сварочным аппаратом, пневмоцилиндром, системы управления вооружением легкобронированных машин, моделью перевернутого маятника.

Джуда Перл — американский и израильский учёный в области информатики, автор математического аппарата байесовских сетей, создатель математической и алгоритмической базы вероятностного вывода, автор алгоритма распространения доверия для графических вероятностных моделей, do-исчисления и исчисления контрфактических условных.

Сеть радиально-базисных функций — искусственная нейронная сеть, которая использует радиальные базисные функции как функции активации.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Сети адаптивного резонанса — разновидность искусственных нейронных сетей, основанная на теории адаптивного резонанса Стивена Гроссберга и Гейла Карпентера. Включает в себя модели обучения с учителем и без учителя, которые используются при решении задач распознавания образов и предсказания.
Адаптивная сеть на основе системы нечеткого вывода или Адаптивная нейро-нечеткая система вывода, ANFIS — это искусственная нейронная сеть, основанная на нечеткой системе вывода Такаги-Сугено.

Импульсная нейронная сеть или Спайковая нейронная сеть — третье поколение искусственных нейронных сетей (ИНС), которое отличается от бинарных и частотных/скоростных ИНС тем, что в нем нейроны обмениваются короткими импульсами одинаковой амплитуды . Является самой реалистичной, с точки зрения физиологии, моделью ИНС.

Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.
Владимир Викторович Вычужанин — доктор технических наук, профессор, заведующий кафедрой информационных технологий национального университета «Одесская политехника» (onpuit.wordpress.com), член-корреспондент Транспортной академии Украины.

В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием малого числа узлов. В искусственных нейронных сетях эта функция также называется передаточной функцией.