
Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Иску́сственный нейро́н — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона. Математически искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход. Такие искусственные нейроны объединяют в сети — соединяют выходы одних нейронов с входами других. Искусственные нейроны и сети являются основными элементами идеального нейрокомпьютера.
Сжа́тие да́нных — алгоритмическое преобразование данных, производимое с целью уменьшения занимаемого ими объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данных, компрессия, сжимающее кодирование, кодирование источника. Обратная процедура называется восстановлением данных.
Нейро́нная сеть Хо́пфилда — полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия определяются заранее в процессе обучения, они являются локальными минимумами функционала, называемого энергией сети. Такая сеть может быть использована как автоассоциативная память, как фильтр, а также для решения некоторых задач оптимизации. В отличие от многих нейронных сетей, работающих до получения ответа через определённое количество тактов, сети Хопфилда работают до достижения равновесия, когда следующее состояние сети в точности равно предыдущему: начальное состояние является входным образом, а при равновесии получают выходной образ.
Самоорганизу́ющаяся ка́рта Ко́хонена — нейронная сеть с обучением без учителя, выполняющая задачу визуализации и кластеризации. Идея сети предложена финским учёным Т. Кохоненом. Является методом проецирования многомерного пространства в пространство с более низкой размерностью, применяется также для решения задач моделирования, прогнозирования, выявление наборов независимых признаков, поиска закономерностей в больших массивах данных, разработке компьютерных игр, квантизации цветов к их ограниченному числу индексов в цветовой палитре: при печати на принтере и ранее на ПК или же на приставках с дисплеем с пониженным числом цветов, для архиваторов [общего назначения] или видео-кодеков, и прч. Является одной из версий нейронных сетей Кохонена.
Машинное обучение — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение за счёт применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, математического анализа, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров. Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.

Перцептро́н — математическая или компьютерная модель восприятия информации мозгом, предложенная Фрэнком Розенблаттом в 1957 году и впервые воплощённая в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.
Де́льта-пра́вило — метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Дельта-правило развилось из первого и второго правил Хебба. Его дальнейшее развитие привело к созданию метода обратного распространения ошибки.

Многослойный перцептрон — частный случай перцептрона Розенблатта, в котором один алгоритм обратного распространения ошибки обучает все слои. Название по историческим причинам не отражает особенности данного вида перцептрона, то есть не связано с тем, что в нём имеется несколько слоёв. Особенностью является наличие более чем одного обучаемого слоя. Необходимость в большом количестве обучаемых слоёв отпадает, так как теоретически единственного скрытого слоя достаточно, чтобы перекодировать входное представление таким образом, чтобы получить линейную разделимость для выходного представления. Существует предположение, что, используя большее число слоёв, можно уменьшить число элементов в них, то есть суммарное число элементов в слоях будет меньше, чем если использовать один скрытый слой. Это предположение успешно используется в технологиях глубокого обучения и имеет обоснование.

Нейронная сеть Элмана — один из видов рекуррентной сети, которая так же как и сеть Джордана получается из многослойного перцептрона введением обратных связей, только связи идут не от выхода сети, а от выходов внутренних нейронов. Это позволяет учесть предысторию наблюдаемых процессов и накопить информацию для выработки правильной стратегии управления. Эти сети могут применяться в системах управления движущимися объектами, так как их главной особенностью является запоминание последовательностей.
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).

Нейро́нная сеть Ко́ско, Двунапра́вленная ассоциати́вная па́мять (ДАП) — нейронная сеть, разработанная Бартом Коско. Это однослойная нейронная сеть с обратными связями, базируется на двух идеях: адаптивной резонансной теории Стефана Гросберга и автоассоциативной памяти Хопфилда.
Скремблер — программное или аппаратное устройство (алгоритм), выполняющее скремблирование — обратимое преобразование цифрового потока без изменения скорости передачи с целью получения свойств случайной последовательности. После скремблирования появление «1» и «0» в выходной последовательности равновероятны. Скремблирование — обратимый процесс, то есть исходное сообщение можно восстановить, применив обратный алгоритм.
Сжатие (компрессия) аудиоданных представляет собой процесс уменьшения скорости цифрового потока за счет сокращения статистической и психоакустической избыточности цифрового звукового сигнала.
Расширяющийся нейронный газ — «это алгоритм, позволяющий осуществлять адаптивную кластеризацию входных данных, то есть не только разделить пространство на кластеры, но и определить необходимое их количество исходя из особенностей самих данных. Расширяющийся нейронный газ не требует априорной информации о данных, таких как оценка количества кластеров или форма кластеров.» Это новый класс вычислительных механизмов. Количество и расположение искусственных нейронов в пространстве признаков заранее не определено, а является результатом вычисления в процессе обучения моделей на основании данных введенных на входе. В данной модели не фиксировано соседство узлов, а динамически меняется по мере улучшения кластеризации. Переменными являются не только отношения соседства, но и число нейронов-кластеров.

Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения. Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв и субдискретизирующих слоёв. Структура сети — однонаправленная, принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов — любая, по выбору исследователя.

Автокодировщик — специальная архитектура искусственных нейронных сетей, позволяющая применять обучение без учителя при использовании метода обратного распространения ошибки. Простейшая архитектура автокодировщика — сеть прямого распространения, без обратных связей, наиболее схожая с перцептроном и содержащая входной слой, промежуточный слой и выходной слой. В отличие от перцептрона, выходной слой автокодировщика должен содержать столько же нейронов, сколько и входной слой.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.