Звук — физическое явление, представляющее собой распространение упругих волн в газообразной, жидкой или твёрдой среде. В узком смысле под звуком имеют в виду эти волны, рассматриваемые в связи с тем, как они воспринимаются органами чувств.
Ква́нтовый эффе́кт Хо́лла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Квантовый эффект Холла (КЭХ) был открыт Клаусом фон Клитцингом в 1980 году, за что впоследствии, в 1985 году, он получил Нобелевскую премию.
Квазичасти́ца — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких, как твёрдые тела и квантовые жидкости.

Фоно́н — квазичастица, квант энергии согласованного колебательного движения атомов твёрдого тела, образующих идеальную кристаллическую решётку.

Интерфере́нция све́та — интерференция электромагнитных волн — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.

Пла́зма — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.

Дробово́й шум или пуассоновский шум — беспорядочные флуктуации числа частиц относительно их среднего значения, связанные с их дискретностью. Для электрически заряженных частиц — электронов, ионов проявляется как флуктуации токов в электрических цепях и электрических приборах. Перемещение каждого носителя заряда в цепи через воображаемую поверхность секущую провод сопровождается всплеском тока в цепи, обусловленного дискретностью носителей электрического заряда. Для незаряженных частиц, например фотонов, возникает при регистрации числа фотонов детектором.

Гидроаэромеханика — обширный раздел механики, который занимается изучением процессов движения жидких и газообразных сред, состояний и условий равновесия в них, а также особенностей их взаимодействия между собой и с твёрдыми телами.
Эффект Шубникова — де Хааза назван в честь советского физика Л. В. Шубникова и нидерландского физика В. де Хааза, открывших его в 1930 году. Наблюдаемый эффект заключался в осцилляциях магнетосопротивления плёнок висмута при низких температурах. Позже эффект Шубникова — де Гааза наблюдали в многих других металлах и полупроводниках. Эффект Шубникова — де Гааза используется для определения тензора эффективной массы и формы поверхности Ферми в металлах и полупроводниках.
В термодинамике и физике твёрдого тела модель Дебая — метод, развитый Дебаем в 1912 г. для оценки фононного вклада в теплоёмкость твёрдых тел. Модель Дебая рассматривает колебания кристаллической решётки как газ квазичастиц — фононов. Эта модель правильно предсказывает теплоёмкость при низких температурах, которая, согласно закону Дебая, пропорциональна
. В пределе высоких температур теплоёмкость стремится к 3R, согласно закону Дюлонга — Пти.

Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются все углы его отклонения относительно вертикали; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.
Циклотронный резонанс (ЦР) — явление поглощения или отражения электромагнитных волн проводниками, помещёнными в постоянное магнитное поле, на частотах, равных или кратных циклотронной частоте носителей заряда.
Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой
и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Флуктуационно-диссипационная теорема — теорема статистической физики, связывающая флуктуации системы с её диссипативными свойствами. ФДТ выводится из предположения о том, что отклик системы на малое внешнее воздействие имеет ту же природу, что и отклик на спонтанные флуктуации.
Геликон — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.
Температурные функции Грина являются некоторой модификацией функций Грина для квантовомеханических систем с температурой отличной от нуля. Они удобны для вычисления термодинамических свойств системы, а также содержат информацию о спектре квазичастиц и о слабонеравновесных кинетических явлениях.
Стаби́льные элемента́рные части́цы — элементарные частицы, имеющие бесконечно большое время жизни в свободном состоянии. Стабильными элементарными частицами являются частицы, имеющие минимальные массы при заданных значениях всех сохраняющихся зарядов. Есть гипотеза о нестабильности протона и антипротона — распад протона.
В теории многих тел термин функция Грина иногда используется как синоним корреляционной функции, но относится к корреляторам операторов поля или операторам рождения и уничтожения.
Дисперсия звука — зависимость фазовой скорости звуковых волн от частоты. В диспергирующей среде фазовая и групповая скорости звука различаются, форма импульса волны изменяется в процессе её распространения, замедляется переход звуковой энергии в высшие гармоники, уменьшается затухание, подавляется образование ударных волн.
Длина фазовой когерентности или длина сбоя фаз — это расстояние, на котором электрон может сохранять свою фазовую когерентность при движении через кристалл. Длина фазовой когерентности
определяет возможность наблюдения квантовых эффектов в мезоскопических системах. Понимание и контроль механизмов, влияющих на фазовую когерентность, являются ключевыми для разработки новых электронных и квантовых устройств. Изучение этого параметра важно для исследования таких квантовых эффектов как интерференция и слабая локализация.