
Тео́рия упру́гости — раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.

Вя́зкость — одно из явлений переноса, свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой. В результате макроскопическая работа, затрачиваемая на это перемещение, рассеивается в виде тепла.

Гидроаэромеханика — обширный раздел механики, который занимается изучением процессов движения жидких и газообразных сред, состояний и условий равновесия в них, а также особенностей их взаимодействия между собой и с твёрдыми телами.
4-вектор — вектор в четырёхмерном пространстве Минковского, а в более общем случае — вектор в искривлённом четырёхмерном пространстве-времени. Компоненты любого 4-вектора, описывающего физическую систему, при переносе или повороте системы отсчёта, а также при переходе из одной системы отсчёта в другую преобразуются по одному и тому закону, задаваемому преобразованием системы отсчёта. В 4-векторе одна временная компонента и три пространственных. Пространственные компоненты составляют обычный пространственный трёхмерный вектор, компоненты которого могут быть выражены в декартовых, цилиндрических, сферических и в любых других пространственных координатах.
- В современных обозначениях временной компоненте обычно соответствует индекс 0, пространственным: 1, 2, 3 — совпадающим с x, y, z. В старой литературе часто используется соглашение, по которому временная компонента считалась не нулевой, а четвёртой.
- Иногда бывает удобно приписывать временной компоненте 4-вектора чисто мнимый характер. Такое представление 4-векторов было исторически введено первым и иногда используется и в современной литературе.
- 4-векторы могут быть записаны в контравариантной и (или) ковариантной форме, которые не всегда совпадают, а в случае действительного представления всегда различаются между собой, хотя в простых случаях это различие весьма просто.

Ненью́то́новской жи́дкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости. Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Уравнения Рейнольдса — уравнения Навье — Стокса, осреднённые по Рейнольдсу. Выведены О. Рейнольдсом в 1895 году.
Действие в физике — скалярная физическая величина, являющаяся мерой движения физической системы. Действие является математическим функционалом, который берёт в качестве аргумента траекторию движения физической системы и возвращает в качестве результата вещественное число.

В современной физике электромагни́тный потенциа́л обычно означает четырёхмерный потенциал электромагнитного поля, являющийся 4-вектором (1-формой). Именно в связи с векторным (4-векторным) характером электромагнитного потенциала электромагнитное поле относится к классу векторных полей в том смысле, который употребляется в современной физике по отношению к фундаментальным бозонным полям.
- Обозначается электромагнитный потенциал чаще всего
или
, что подразумевает величину с индексом, имеющую четыре компоненты
или
, причём индексом 0, как правило, обозначается временная компонента, а индексами 1, 2, 3 — три пространственных. В данной статье мы будем придерживаться первого обозначения. - В современной литературе могут использоваться более абстрактные обозначения.
Аналогия Рейнольдса — аналогия между переносом тепла и трением.
Степенной закон вязкости жидкости — это соотношение для неньютоновских жидкостей, согласно которому напряжение сдвига τ даётся формулой
,
Температу́рное напряже́ние — вид механического напряжения, возникающего в какой-либо среде вследствие изменения температуры либо неравномерности его распределения. Температурные напряжения могут возникать как в твёрдых телах, так и в газах.
Формула Фейнмана — Каца — математическая формула, устанавливающая связь между дифференциальными уравнениями с частными производными и случайными процессами. Названа в честь физика Ричарда Фейнмана и математика Марка Каца.
Уравне́ние Шви́нгера — Томона́ги, в квантовой теории поля, основное уравнение движения, обобщающее уравнение Шрёдингера на релятивистский случай.

Тео́рия пласти́н — раздел теории упругости, в котором рассматриваются упругие тела с толщиной много меньше, чем остальные геометрические размеры. Сведение трёхмерной задачи теории упругости к двумерной и её решение являются основными темами теории пластин. Общий вопрос теории заключается в нахождении уравнений, отвечающих за связи между деформациями и напряжениями при различных допущениях. В случае тонких пластин и малых прогибов применяют теорию Кирхгофа — Лява. Большие прогибы тонких пластин описываются уравнениями Фёппля — фон Кармана. Для упругих свойств толстых пластин применяют теорию Миндлина. Исторически теория пластин развивалась в связи с многочисленными практическими применениями в строительстве, а позже — в кораблестроении и самолётостроении, где важны расчёты на прочность.
В технике, физике и химии изучение явлений переноса касается обмена массой, энергией, зарядом, импульсом и угловым моментом в исследуемых системах. Хотя явления переноса опираются на такие разные области, как механика сплошных сред и термодинамика, в них уделяют большое внимание общности между рассматриваемыми темами. Перенос массы, количества движения и тепла имеет очень схожую математическую основу, и параллели между ними используются при изучении явлений переноса для выявления глубоких математических связей, которые часто предоставляют очень полезные инструменты для анализа одной области, которые напрямую выводятся из других.

Тензор напряжений Максвелла представляет собой симметричный тензор второго порядка, используемый в классическом электромагнетизме для представления взаимодействия между электромагнитными силами и механическим импульсом. В простых случаях, таких как точечный заряд, свободно движущийся в однородном магнитном поле, легко рассчитать силы, действующие на заряд, согласно силе Лоренца. В более сложных случаях такая обычная процедура может стать непрактично сложной с уравнениями, охватывающими несколько строк. Поэтому удобно собрать многие из этих членов в тензоре напряжений Максвелла и использовать тензорную арифметику, чтобы найти ответ на поставленную задачу.
Метод Чепмена — Энскога — метод решения кинетического уравнения Больцмана. На его основе могут быть получены уравнения газовой гидродинамики из уравнения Больцмана. Этот метод оправдывает феноменологические определяющие соотношения, возникающие в гидродинамических описаниях, таких как уравнения Навье — Стокса. При этом получаются выражения для различных коэффициентов переноса, таких как теплопроводность и вязкость, через молекулярные параметры. Таким образом, теория Чепмена — Энскога представляет собой важный шаг в переходе от микроскопического описания, основанного на частицах, к континуальному гидродинамическому описанию.