Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.
Термодинамическая энтропия
, часто именуемая просто энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин; энтропия и температура — сопряжённые термодинамические величины, необходимые для описания термических свойств системы и тепловых процессов в ней. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической и химической.

Дми́трий Петро́вич Конова́лов — русский, советский химик, метролог, специалист в области физической химии, термохимии и калориметрии, оказавший огромное влияние на развитие химической науки в целом, — на становление и развитие промышленности России, один из основоположников учения о растворах, химической термодинамики, общественный и государственный деятель, действительный член АН СССР (1923).

Гильберт Ньютон Льюис — американский физический химик.
Хими́ческий потенциа́л
— термодинамическая функция, применяемая при описании состояния систем с переменным числом частиц. Определяет изменение термодинамических потенциалов при изменении числа частиц в системе. Представляет собой энергию добавления одной частицы в систему без совершения работы. Применяется для описания материального взаимодействия.
Пе́рвое нача́ло термодина́мики — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают одно из следствий закона сохранения энергии, из чего проистекает отсутствие единообразия формулировок первого начала, используемых в учебной и научной литературе.
Хими́ческая термодина́мика — раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики. Применение термодинамического подхода к химическим реакциям основано на том, что в фундаментальном уравнении Гиббса в качестве переменных можно использовать как массы или количества независимых компонентов, — если условия задачи не требуют детального рассмотрения химического равновесия, — так и массы (количества) составляющих веществ совместно с уравнениями связи, описывающими химические реакции, — когда требуется подробное описание химического равновесия.

Тройна́я то́чка в однокомпонентной системе — точка схождения кривых двухфазных равновесий на плоской P—T-фазовой диаграмме, соответствующая устойчивому равновесию трёх фаз. Тройная точка нонвариантна, т. е. не допускает изменения ни одного из характеризующих её параметров состояния — ни температуры, ни давления. Индивидуальные вещества могут иметь несколько стабильных кристаллических фаз и вследствие этого несколько тройных точек. В системе, способной к образованию N фаз, число возможных тройных точек равно
. Например, для серы известны четыре фазы — две твёрдые, жидкая и газообразная — и четыре тройные точки, одна из которых метастабильная.

Якоб Хендрик (Хенри) Вант-Гофф — нидерландский химик, один из основателей стереохимии и химической кинетики, первый лауреат Нобелевской премии по химии (1901) с формулировкой «в знак признания огромной важности открытия законов химической динамики и осмотического давления в растворах».
Пра́вило фаз — соотношение, связывающее число компонентов, фаз и термодинамических степеней свободы в равновесной термодинамической системе. Роль правила фаз особенно велика при рассмотрении гетерогенных равновесий в многофазных многокомпонентных системах.

Джоза́йя Уи́ллард Гиббс — американский физик, физикохимик, математик и механик, один из создателей векторного анализа, статистической физики, математической теории термодинамики, что во многом предопределило развитие современных точных наук и естествознания в целом. Образ Гиббса запечатлён в «Галерее славы великих американцев». Его имя присвоено многим величинам и понятиям химической термодинамики: энергия Гиббса, парадокс Гиббса, правило фаз Гиббса, уравнения Гиббса — Гельмгольца, уравнения Гиббса — Дюгема, лемма Гиббса, треугольник Гиббса — Розебома и др.
Характеристическая функция — функция состояния термодинамической системы, рассматриваемая как математическая функция определённого набора термодинамических параметров — естественных независимых переменных — и характеризующаяся тем, что посредством этой функции, её частных производных по естественным переменным и самих естественных переменных могут быть выражены в явном виде все термодинамические свойства системы. После замены хотя бы одной из естественных переменных на другую независимую переменную функция перестаёт быть характеристической. При фиксированных естественных переменных характер изменения характеристической функции указывает на направление протекания самопроизвольного процесса. Характеристическая функция аддитивна: характеристическая функция всей системы равна сумме характеристических функций её частей. Функция состояния, представляющая собой характеристическую функцию для одних термодинамических систем, может не являться характеристической для других систем. Так, потенциал Гиббса и функция Планка для фотонного газа не являются характеристическими функциями, поскольку тождественно равны нулю.

Термодинамическая функция состояния — это физическая величина, рассматриваемая как функция нескольких независимых переменных состояния. Причём набор независимых переменных выбирается из требования необходимости и достаточности для полного описания мгновенного состояния однородной термодинамической системы. Функции состояния заданы для текущего состояния равновесия системы. Их применяют для термодинамического описания сплошных сред — газов, жидкостей, твёрдых веществ, включая кристаллы, эмульсии и чернотельное излучение. Функции состояния не зависят от пути термодинамического процесса, по которому система достигла своего нынешнего состояния. Термодинамическая функция состояния описывает состояние равновесия системы и, следовательно, также описывает тип системы. Например, функция состояния может описывать газ, жидкость или твердую фазу; гетерогенную или гомогенную смесь; и количество энергии, необходимое для создания таких систем или перевода их в другое состояние равновесия. Следует уточнить, что если равновесие наступает не во всём объёме системы, а только в её бесконечно малой части, то термодинамические функции состояния также описывают эти малые части, а изменение термодинамических переменных состояния определены как функции времени и координаты, которые меняются благодаря потокам в среде, стремящихся привести в равновесное состояние всю систему. Понятие о локальности термодинамического равновесия позволяет использовать термодинамические функции состояния в неравновесной термодинамике.

Уа́йлдер Дуа́йт Банкро́фт — американский физхимик, один из основоположников этого направления в США. Занимался изучением применения правила фаз Гиббса, а позднее коллоидной химией. Ученик Вильгельма Оствальда и Вант-Гоффа; привез в Америку полученные из первых рук знания «ионистов» об электролитической диссоциации, осмотическом давлении и электродвижущей силе.
Закон транзитивности термического равновесия вводит в физику представление об эмпирической температуре как физической величине, пригодной для характеристики состояния очень многих макроскопических объектов. Примером макроскопического объекта, не нуждающегося в использовании температуры и прочих термических величин для описания своего состояния, служит абсолютно твёрдое тело. Термические системы, то есть макроскопические системы, к которым применимо понятие температуры, являются предметом изучения термодинамики, статистической физики и физики сплошных сред. Абсолютно твёрдое тело к термическим системам не относится.
Аксиоматика термодинамики имеет своей задачей выявление структуры термодинамических понятий и законов с целью логически непротиворечивого введения в научный оборот макроскопических физических величин, которым не даётся определения в других разделах физики, — внутренней энергии, энтропии и температуры: «в термодинамику вводятся две новые физические величины — энтропия и абсолютная температура; этот шаг подлежит обоснованию». Существует и другое представление о роли аксиоматики в термодинамике (Г. Фальк): «С установлением какой-либо теории она сама становится предметом исследования прежде всего, когда она благодаря дополнениям в такой мере расширяется, что становится всё труднее проникнуть в её логические связи. Тогда и начинаются задачи аксиоматики…».
Компоненты — независимые составляющие вещества системы, то есть индивидуальные химические вещества, которые необходимы и достаточны для составления данной термодинамической системы, допускают выделение из системы и независимое существование вне её. Изменения масс компонентов выражают все возможные изменения в химическом составе системы, а масса каждого вещества, выбранного в качестве компонента, не зависит от масс других компонентов.
Геннадий Яковлевич Кабо — белорусский химик, крупный специалист в области химической термодинамики органических веществ, доктор химических наук, профессор, лауреат премии им. А. Н. Севченко (1996).