
Дыха́ние (лат. respiratio) — основная форма катаболизма у животных, растений и многих микроорганизмов. Дыхание — это физиологический процесс, обеспечивающий нормальное течение метаболизма (обмена веществ и энергии) живых организмов и способствующий поддержанию гомеостаза (постоянства внутренней среды), получая из окружающей среды кислород (О2) и отводя в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, H2O и другие). В зависимости от интенсивности обмена веществ человек выделяет через лёгкие в среднем около 5 — 18 литров углекислого газа (СО2), и 50 граммов воды в час. А с ними — около 400 других примесей летучих соединений, в том числе и ацетон. В процессе дыхания богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.
Аэро́бы — организмы, которые нуждаются в свободном молекулярном кислороде для процессов синтеза энергии, в отличие от анаэробов. К аэробам относятся подавляющее большинство животных, все растения, а также значительная часть микроорганизмов.

Броже́ние — биохимический процесс, основанный на окислительно-восстановительных превращениях органических соединений в анаэробных условиях. В ходе брожения происходит образование АТФ за счёт субстратного фосфорилирования. При брожении субстрат окисляется не полностью, поэтому брожение энергетически малоэффективно в сравнении с дыханием, в ходе которого АТФ образуется не за счёт субстратного фосфорилирования, а за счёт окислительного фосфорилирования. Таким образом, основной биологический смысл брожения заключается не в получении энергии, а в окислении НАДН и обеспечении гликолитических процессов окисленной формой (НАД+) этого кофермента в условиях отсутствия кислорода.

Фотоси́нтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов.
Денитрификация — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами в анаэробных условиях и связана с получением ими энергии.

Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ.

Thiomargarita namibiensis (лат.) — вид морских грамотрицательных коккоидных бактерий из класса гамма-протеобактерий, обнаруженный в придонных осадках континентального шельфа Намибии. До открытия Thiomargarita magnifica, считалась крупнейшей из известных науке бактерий: диаметр Thiomargarita namibiensis, как правило, 0,1—0,3 мм, имеет шаровидную форму и видна невооружённым глазом.

Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Анаэробное дыхание — это биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Микроаэрофильный организм — микроорганизм, требующий, в отличие от строгих анаэробов, для своего роста присутствия кислорода в атмосфере или питательной среде, но в пониженных концентрациях по сравнению с содержанием кислорода в обычном воздухе или в нормальных тканях организма хозяина. Многие микроаэрофилы также являются капнофилами, то есть им требуется повышенная концентрация углекислого газа. В лаборатории такие организмы легко культивируются в «свечной банке». «Свечная банка» это ёмкость, в которую перед запечатыванием воздухонепроницаемой крышкой вносят горящую свечу. Пламя свечи будет гореть до тех пор, пока не потухнет от недостатка кислорода, в результате чего в банке образуется атмосфера, насыщенная диоксидом углерода, с пониженным содержанием кислорода.

Факультативные анаэробы — организмы, энергетические циклы которых при отсутствии кислорода проходят по анаэробному пути (брожение), а при наличии кислорода способные получать энергию за счёт дыхания. Примерами таких организмов этой группы являются энтеробактерии. Около 80—90 % бактерий, развивающихся в приливно-отливной зоне эстуариев относят к факультативных аэробам.

Сульфатредуцирующие бактерии представляют собой группу бактерий, характеризующуюся способностью окислять сероводород и отлагать в своём теле крупинки серы. Признак этой группы, как видно из сказанного, чисто физиологический, морфологических же признаков эта группа не имеет. Известны учёным серные бактерии уже давно. Ф. Кон первый изучал их физиологию, и так как серные бактерии всегда были находимы в тех местах, где наблюдалось выделение сероводорода, то Кон пришёл к заключению, что образование сероводорода находится в зависимости от жизнедеятельности этих бактерий, разрушающих различные соединения, заключающие в себе серу, и выделяющих сероводород. В этом своём заключении он опирается на наблюдения Лотара Мейера, который заметил, что вода Линдекских минеральных источников с серными бактериями — «водорослями», как он думал — после четырёхмесячного стояния заключает гораздо больше сероводорода, чем без «водорослей», и что «водоросли» восстанавливают, по-видимому, сернокислые соли в сероводород. Наблюдения над минеральными источниками в Иоганисбаде показали, далее, Кону, что там, где нет серных бактерий (Beggiatoa), там нет и сероводорода, и наоборот; кроме того, исследуя материал, присланный ему с берегов Дании Вормигом из мест, где замечалось выделение сероводорода, Кон нашёл много спирилл и монад с отложением серы внутри их тела, что ещё более укрепило его во взгляде на способность многих микроорганизмов выделять сероводород. Гоппе-Зейлер первый усомнился в справедливости заключений Кона, а Виноградский блестяще доказал ошибочность взглядов Кона; взгляд Виноградского считается теперь общепризнанным. По его мнению, серные бактерии не имеют никакого отношения к образованию сероводорода и восстановлению сульфатов, отложение же серы внутри тела бактерий Виноградский принимает как следствие окисления находящегося в воде сероводорода бактериями. Шаблон:Биофото Для получения серных бактерий в культурах Виноградский разрезал на мелкие куски свежевыкопанное корневище водяного растения — лучше всего для этой цели ему служило корневище сусака — и клал их в высокий сосуд, в который наливал колодезной воды с прибавкой небольшого количества гипса. Уже по прошествии 5—6 дней вода сосуда начинала пахнуть сероводородом, выделение его понемногу увеличивалось, но серных бактерий заметно ещё не было. Только через 4 недели можно, наконец, заметить появление нитей Beggiatoa, а месяца через 2 стенки сосуда вблизи поверхности воды оказывались уже вполне ими покрыты. Если кусочки Butomus umbellatus перед тем, как бросить в воду, подержать некоторое время в кипящей воде, то хотя сероводород и образуется потом в сосуде с гипсом, но Beggiatoa не появляется. Таким образом Виноградский мог заключить, что не Beggiatoa образует сероводород, но газ этот появляется помимо серных бактерий. Сера отлагается в теле бактерий только тогда, когда бактерии развиваются в воде, заключающей сероводород, и исчезает уже по прошествии 24 часов, когда бактерии переносят в ключевую или кипячёную воду. В случае недостатка сероводорода в воде бактерии окисляют находящуюся в их клетках серу до серной кислоты, которая образует с углекислой известью окружающей воды гипс. Схематически процессы, происходящие при этом, можно представить в виде следующих формул:

.

Протеобактерии — наиболее многочисленная группа бактерий — 1534 вида или примерно треть от всех известных видов бактерий.
Литотрофы — организмы, для которых донорами электронов, необходимых для многих клеточных процессов, являются неорганические вещества. Противопоставлены органотрофам.

Пурпурные бактерии — разнородная группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Пурпурные бактерии относятся к классам альфа-, бета-, и гамма-протеобактерий.

Облига́тные (стро́гие) анаэро́бы — организмы, живущие и растущие только при отсутствии молекулярного кислорода в среде, он для них губителен.

Биохимия мышьяка включает в себя биохимические процессы, в которых участвуют мышьяк или его соединения.

Sulfolobaceae (лат.) — семейство архей из типа кренархеот (Crenarchaeota), единственное в порядке Sulfolobales. Первый представитель семейства был выделен Т. Броком из горячего источника в национальном парке Йеллоустон. Первоначально он был назван Caldariella acidophila, однако сейчас этот вид известен как Sulfolobus acidocaldarius.
Аэротаксис — это движение микроорганизмов, одноклеточных, подвижных клеток многоклеточных организмов к источнику раздражения или от него. Источником раздражения в данном случае является кислород. Аэротаксис является частным случаем хемотаксиса.

Тенерикуты — тип чрезвычайно маленьких бактерий, который содержит один общепризнанный класс — Mollicutes (микоплазмы). От других бактерий его представители отличаются отсутствием клеточной стенки, в связи с чем при окрашивании по Граму они проявляют себя как грамотрицательные бактерии. От внешней среды они отделены только клеточной мембраной. Другой их особенностью является ярко выраженный полиморфизм.