Прогно́з — это научно обоснованное суждение о возможных состояниях объекта в будущем и (или) об альтернативных путях и сроках их осуществления. В узком смысле, это вероятностное суждение о будущем состоянии объекта исследования.

Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов. Идея метода заключается в замене истинных соотношений выборочными аналогами.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменных
на зависимую переменную
. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая, сумма квадратов между которой и данными минимальна.
S — язык программирования, разработанный фирмой AT&T Bell Labs, предназначен для обработки данных. Разработано несколько версий расширения языка S — S-Plus, для различных платформ.
Логистическая регрессия или логит-модель — статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём его сравнения с логистической кривой. Эта регрессия выдаёт ответ в виде вероятности бинарного события.
Статистическое и эконометрическое модели́рование — исследование объектов познания на их статистических моделях; построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений или показателей, интересующих исследователя.

Коэффициент детерминации — это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости, то есть объясняющими переменными. Более точно — это единица минус доля необъяснённой дисперсии в дисперсии зависимой переменной. Его рассматривают как универсальную меру зависимости одной случайной величины от множества других. В частном случае линейной зависимости
является квадратом так называемого множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. В частности, для модели парной линейной регрессии коэффициент детерминации равен квадрату обычного коэффициента корреляции между y и x.
Линейная регрессия — используемая в статистике регрессионная модель зависимости одной переменной
от другой или нескольких других переменных
с линейной функцией зависимости.
Система одновременных уравнений — совокупность эконометрических уравнений, определяющих взаимозависимость экономических переменных. Важным отличительным признаком системы «одновременных» уравнений от прочих систем уравнений является наличие одних и тех же переменных в правых и левых частях разных уравнений системы.

GNU Regression, Econometrics and Time-series Library — прикладной программный пакет для эконометрического моделирования, часть проекта GNU. Девиз разработчиков «От эконометристов, для эконометристов».
Тест множителей Лагранжа — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оцененных на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом отношения правдоподобия и тестом Вальда. Тест является асимптотическим, то есть для достоверности выводов требуется достаточно большой объем выборки.
Метод инструментальных переменных — метод оценки параметров регрессионных моделей, основанный на использовании дополнительных, не участвующих в модели, так называемых инструментальных переменных. Метод применяется в случае, когда факторы регрессионной модели не удовлетворяют условию экзогенности, то есть являются зависимыми со случайными ошибками. В этом случае, оценки метода наименьших квадратов являются смещенными и несостоятельными.
Вне́шне несвя́занные уравне́ния — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Про́бит-регрессия — применяемая в различных областях статистическая (нелинейная) модель и метод анализа зависимости качественных переменных от множества факторов, основанная на нормальном распределении. В экономике (эконометрике) пробит-модели используются в моделях бинарного выбора или в моделях множественного выбора между различными альтернативами, для моделирования дефолтов компаний, в страховании жизни - для оценки вероятности смерти в зависимости от возраста и пола и т. д. В токсикологии пробит-регрессия используется для оценки влияния дозы или концентрации тех или иных веществ на биологические объекты.
Анализ выживаемости — класс статистических моделей, позволяющих оценить вероятность наступления события.

Нелинейная регрессия — это вид регрессионного анализа, в котором экспериментальные данные моделируются функцией, являющейся нелинейной комбинацией параметров модели и зависящей от одной и более независимых переменных. Данные аппроксимируются методом последовательных приближений.

Преобразование данных — это применение детерминированной математической функции к каждой точке множества данных, то есть каждая точка данных zi заменяется преобразованным значением
, где f — функция. Преобразования обычно применяются так, что данные больше подходят для процедуры статистического вывода, которую хотят применять, для улучшения интерпретируемости или для графического представления.