Дина́мика — раздел механики, в котором изучаются причины изменения механического движения, тогда как способы описать движение изучает кинематика. В классической механике этими причинами являются силы. Динамика оперирует также такими понятиями, как масса, импульс, момент импульса, энергия.
Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики.
Ско́рость — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта. По определению, равна производной
радиус-вектора точки по времени. В СИ измеряется в метрах в секунду.
Частота́ — физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени. Рассчитывается, как отношение количества повторений или возникновения событий (процессов) к промежутку времени, за которое они совершены. Стандартные обозначения в формулах — буква латинского алфавита «эф» f, F или буква греческого алфавита «ню» .
Преобразова́ния Ло́ренца — линейные преобразования векторного псевдоевклидова пространства, сохраняющие длины или, что эквивалентно, скалярное произведение векторов.
Углова́я ско́рость — векторная величина, характеризующая быстроту и направление вращения материальной точки или абсолютно твёрдого тела относительно оси вращения. Модуль угловой скорости для вращательного движения совпадает с мгновенной угловой частотой вращения, а направление перпендикулярно плоскости вращения и связано с направлением вращения правилом правого винта. Строго говоря, угловая скорость представляется псевдовектором, и может быть также представлена в виде кососимметрического тензора.
Мо́щность — скалярная физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Преобразова́ния Галиле́я — в классической механике и нерелятивистской квантовой механике: преобразования координат и скорости при переходе от одной инерциальной системы отсчёта (ИСО) к другой. Термин был предложен Филиппом Франком в 1909 году. Преобразования Галилея опираются на принцип относительности Галилея, который подразумевает одинаковость времени во всех системах отсчёта.
Враща́тельное движе́ние — вид механического движения. При вращательном движении материальная точка описывает окружность. При вращательном движении абсолютно твёрдого тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.
Химическая кинетика или кинетика химических реакций — раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений.

Звёздные су́тки — период вращения какого-либо небесного тела вокруг собственной оси в инерциальной системе отсчёта, за которую обычно принимается система отсчёта, связанная с удалёнными звёздами. Для Земли это время, за которое Земля совершает один оборот вокруг своей оси по отношению к далёким звёздам, равное приблизительно 23 часам 56 минутам 04,09054 секунды, или 86164,09054 секунды.
Кинема́тика в физике — раздел механики, изучающий математическое описание движения идеализированных тел, без рассмотрения причин движения. Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики — динамика.
Модель Крамера — Лундберга — математическая модель, позволяющая оценивать риски разорения страховой компании. В рамках данной модели предполагается, что страховые взносы поступают равномерно, со скоростью с условных денежных единиц за единицу времени, где с — размер страховой премии. Модель позволяет определить размер страховой премии, необходимой для неразорения компании.

Модель Солоу — модель экзогенного экономического роста, основанная на экзогенной норме сбережений и неоклассической производственной функции.

Модель Рамсея — Касса — Купманса — неоклассическая модель экзогенного экономического роста в условиях совершенной конкуренции. Внесла вклад в понимание того, каким образом решения индивидов формируют норму сбережений в экономике. Оптимальная динамика потребления из модели оказалась удачной заменой экзогенной норме сбережений и затем применялась и в более поздних моделях экономического роста. Вместе с тем, модель не даёт удовлетворительного объяснения межстрановым различиям в уровне дохода на душу населения. Разработана одновременно и независимо друг от друга Тьяллингом Купмансом и Дэвидом Кассом с использованием идей Фрэнка Рамсея в 1963 году.
AK-моде́ль — эндогенная модель экономического ростa, в которой устойчивый экономический рост достигается за счет неубывающей предельной производительности капитала, понимаемого в модели как совокупность физического и человеческого капитала, в производстве инвестиционных товаров. AK-модель преодолела недостаток экзогенности темпов научно-технического прогресса, присущий неоклассическим моделям, и показала возможность негативного воздействия фискальной политики на долгосрочные темпы экономического роста. Однако сильная чувствительность темпов экономического роста к изменениям налоговой ставки, предполагаемая по модели, не подтверждается эмпирически. Также в модели не раскрывается целенаправленная деятельность экономических агентов по инвестированию в новые технологии с целью извлечения прибыли. Разработана в 1990 году Серджио Ребело.

Моде́ль Мэ́нкью — Ро́мера — Ве́йла — неоклассическая модель экзогенного экономического роста с включением человеческого капитала. Модель Мэнкью — Ромера — Вейла лучше соответствует фактическим межстрановым различиям, чем модель Солоу, благодаря включению человеческого капитала в число факторов производства и тому, что в развитых странах существенно выше уровень человеческого капитала на душу населения. Вместе с тем модель также не даёт объяснения причинам этих различий и сохраняет недостаток экзогенной нормы сбережений. Разработана на основании модели Солоу Грегори Мэнкью, Дэвидом Ромером и Дэвидом Вейлом в 1990 году.
Промышленный капитал — капитал, функцией которого является создание прибавочной стоимости. Промышленный капитал постоянно находится в движении, называемом кругооборотом капитала, последовательно принимая денежную, товарную, производительную и вновь товарную, денежную формы:
