В более общем виде, вычисление значения заданной функции для каждого элемента заданного подмножества области определения функции даёт множество, называемое «образом для функции ». Аналогично, обратный образ (или прообраз) заданного подмножества кодомена функции — это множество всех элементов области определения, которые отображаются в элементы множества .
Образ и обратный образ могут также быть определены для общих бинарных отношений, а не только функций.
Термин «образ» используется тремя связанными способами. В этих определениях — это функция из множества в множество .
Образ элемента
Если является элементом множества , то образ элемента для функции , обозначаемый [1], — это значение функции для аргумента .
Образ подмножества
Образ подмножества для функции , обозначаемый , является подмножеством множества , которое может быть определено с помощью следующей формы записи[2]:
.
Если нет риска путаницы, записывается просто как . Это соглашение является общепринятым. Предполагаемый смысл должен быть определён из контекста. Это делает функцией, областью определения которой является степень множества (множество всех подмножеств множества ), а кодоменом является степень множества . См. раздел § Обозначения.
Если является произвольным бинарным отношением на прямом произведении, то множество называется образом отношения . Множество называется областью определения отношения .
Обратный образ
Пусть будет функцией из в . Прообраз, или обратный образ, множества для функции , обозначаемый , — это подмножество , определённое как
Возможны и другие обозначения, как например [4] и .[5]
Обратный образ синглетона, обозначаемый или , называется также слоем для или множеством уровня элемента . Множество всех слоёв для элементов — это семейство подмножеств, индексированных элементами .
Например, для функции обратным образом будет . Как было сказано выше, если нет риска путаницы, может обозначаться как , а можно рассматривать как функцию из множества всех подмножеств (булеана) множества в булеан множества . Обозначение не следует путать с обратной функцией, хотя оно и согласуется с обычной обратной функцией для биекций в том, что обратный образ для является образом для .
Обозначения для образа и обратного образа
Традиционные обозначения, использованные в предыдущих разделах, могут вызвать сложности в понимании. Альтернативой[6] является задание явных имён для образа и прообраза функций между булеанами.
Некоторые книги называют образ областью значений , но этого следует избегать, поскольку термин «область значений» широко используется также для обозначения кодомена функции .
Примеры
определена как Образом множества {2, 3} для функции является . Образ функции — это . Прообразом является . Прообразом множества также является . Прообразом множества является пустое множество.
определена как . Образ для функции — это , а образ функции — это . Прообраз для — это . Прообраз множества для — это пустое множество, поскольку отрицательные числа не имеют квадратных корней в множестве вещественных чисел.
Результаты для образов и прообразов (булевой) алгебры пересечений и объединений работает для любой коллекции подмножеств, не только для пар подмножеств:
(Здесь может быть бесконечным множеством, даже несчётным.)
Что касается описанной выше алгебры подмножеств, обратная отображающая функция — это гомоморфизм решётки, в то время как отображающая функция — это лишь гомоморфизм полурешёток (т. е. она не всегда сохраняет пересечения).
John M. Lee. Introduction to topological manifolds. — 2nd. — New York, Dordrecht, Heidelberg, London: Springer, 2011. — Т. 202. — (Graduate Texts in Mathematics). — ISBN 978-1-4419-7939-1.
John L. Kelley. General Topology. — 2. — Birkhäuser, 1985. — Т. 27. — (Graduate Texts in Mathematics). — ISBN 978-0-387-90125-1.
James R. Munkres. Topology. — Second ed.. — Upper Saddle River, NJ: Prentice Hall, Inc., 2000. — ISBN 978-0-13-181629-9.
Похожие исследовательские статьи
Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Непреры́вное отображе́ние — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Метри́ческое простра́нство — множество вместе со способом измерения расстояния между его элементами. Является центральным понятием геометрии и топологии.
Множество всех подмножеств — множество, состоящее из всех подмножеств данного множества ; обозначается или .
Фу́нкция — соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого.
Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.
Аксио́мой вы́бора, англ. аббр. AC называется следующее высказывание теории множеств:
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Ле́мма Фату́ — техническое утверждение, используемое при доказательстве различных теорем в функциональном анализе и теории вероятностей. Оно даёт одно из условий, при которых предел почти всюду сходящейся функциональной последовательности будет суммируемым.
Случайное компактное множество — это случайная величина со значениями в компактных множествах. Случайные компактные множества используются при изучении аттракторов случайных динамических систем.
Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой.
Пучок — структура, используемая для установления отношений между локальными и глобальными свойствами или характеристиками некоторого математического объекта. Пучки играют значительную роль в топологии, дифференциальной геометрии и алгебраической геометрии, но также применяются в теории чисел, анализе и теории категорий.
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Предпоря́док (квазипоря́док) — бинарное отношение на множестве, обладающее свойствами рефлексивности и транзитивности. Обычно это отношение обозначается , тогда аксиомы предпорядка на множестве принимают вид:
,
.
Трансверса́ль — понятие из теории множеств, которое является достаточно важным для всей дискретной математики. Оно также существует в логике и линейной алгебре.
Унивалентный функтор — функтор, который инъективен на каждом множестве морфизмов с фиксированными образом и прообразом. Полный функтор — двойственное понятие — функтор, который сюръективен на каждом множестве морфизмов с фиксированным образом и прообразом.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.