Обра́тные гиперболи́ческие фу́нкции (известные также как а̀реафу́нкции или ареа-функции) — семейство элементарных функций, определяющихся как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболыx2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину дуги единичной окружностиx2 + y2 = 1. Для этих функций часто используются обозначения arcsinh, arcsh, arccosh, arcch и т. д., хотя такие обозначения являются, строго говоря, ошибочными, так как префикс arc является сокращением от arcus (дуга) и потому относится только к обратным тригонометрическим функциям, тогда как ar обозначает area — площадь. Более правильными являются обозначения arsinh, arsh и т. д. и названия обратный гиперболический синус, ареасинус и т. д. Также применяют[1] названия гиперболический ареасинус, гиперболический ареакосинус и т. д., но слово «гиперболический» здесь является лишним, поскольку на принадлежность функции семейству обратных гиперболических функций однозначно указывает префикс «ареа». Иногда названия соответствующих функций записывают через дефис: ареа-синус, ареа-косинус и т. д.
В комплексной плоскости гиперболические функции являются периодическими, а обратные им функции — многозначными. Поэтому подобно обратным тригонометрическим функциям обозначения ареафункций принято записывать с большой буквы, если подразумевается множество значений функции (логарифм в соответствующем определении функции также понимается как общее значение логарифма, обозначаемое Ln). С маленькой буквы записываются главные значения соответствующих функций.
В русской литературе обозначения большинства прямых и обратных гиперболических функций (так же как и части тригонометрических) отличаются от английских обозначений.
Ареасинус для действительного аргументаАреакосинус для действительного аргументаАреатангенс для действительного аргументаАреакотангенс для действительного аргументаАреасеканс для действительного аргументаАреакосеканс для действительного аргумента
Квадратными корнями в этих формулах являются главные значения квадратного корня (то есть если представить комплексное число z как при ), а логарифмические функции являются функциями комплексной переменной. Для действительных аргументов можно осуществить некоторые упрощения, например которые не всегда верны для главных значений квадратных корней.
Разложение в ряд
Обратные гиперболические функции можно разложить в ряды:
Асимптотическое разложение arsh x даётся формулой
Производные
Функция
Производная
Примечание
Доказательство
Доказательство
Доказательство
Доказательство
Для действительных x:
Пример дифференцирования: если θ = arsh x, то:
Комбинация гиперболических и обратных гиперболических функций
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Ниже приведён список интегралов от рациональных функций.
для
для
для
для
для
для
для
для
Ниже приведён список интегралов от иррациональных функций. В списке везде опущена аддитивная константа интегрирования.
Ниже приведён список интегралов от обратных гиперболических функций.
Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Частный случай разложения в ряд Тейлора в нулевой точке называется рядом Маклорена.
Вычисление производной — важнейшая операция в дифференциальном исчислении. Эта статья содержит список формул для нахождения производных от некоторых функций.
Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями.
Быстрота́ — в релятивистской кинематике монотонно возрастающая функция скорости, которая стремится к бесконечности, когда скорость стремится к скорости света. В отличие от скорости, для которой закон сложения нетривиален, для быстроты характерен простой закон сложения. Поэтому в задачах, связанных с релятивистскими движениями, часто удобнее пользоваться формализмом быстрот, а не обычных скоростей.
Фу́нкция Гудерма́на — функция, показывающая связь тригонометрических и гиперболических функций без привлечения комплексных чисел. Названа в честь немецкого математика Кристофа Гудермана. Обозначается или Возникает в задаче отображения плоскости на сферу в картографической проекции Меркатора.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Обра́тные тригонометри́ческие фу́нкции — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:
арксинус
арккосинус
арктангенс
арккотангенс
арксеканс
арккосеканс
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость. Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Уравне́ние Ке́плера описывает движение тела по эллиптической орбите в задаче двух тел и имеет вид:
Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:
Универсальная тригонометрическая подстановка, в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Интегрирование тригонометрической функции секанса было предметом одной из «нерешённых задач середины семнадцатого века», которая была решена в 1668 году Джеймсом Грегори. В 1599 году Эдвард Райт оценил интеграл с помощью численных методов — то, что мы сегодня называем Римановыми суммами. Он нашёл решение для целей картографии — а именно, для построения точных проекций Меркатора. В 1640-х годах Генри Бонд, преподаватель навигации, геодезической съёмки и других математических дисциплин, сравнил таблицы значений интеграла от секанса, составленные Райтом с помощью численных методов, с таблицами логарифмов от тангенса, и гипотетически заключил, что
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Модель Пуанкаре в верхней полуплоскости — это верхняя половина плоскости , обозначаемая ниже как H, вместе с метрикой, которая делает её моделью двумерной гиперболической геометрии.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.