Сте́пень окисле́ния — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.
Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (реагентов) в другие вещества (продукты), при котором ядра атомов не меняются, при этом происходит перераспределение электронов и ядер, и образуются новые химические вещества. В отличие от ядерных реакций, при химических реакциях не изменяется общее число ядер атомов и изотопный состав химических элементов.

Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс — химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующиеся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).
Неорганические сульфиды (от лат. sulphur — сера) — класс химических соединений, представляющих собой соединения металлов (а также ряда неметаллов — В, Si, Р, As) с серой (S), где она имеет степень окисления −2. Могут рассматриваться как соли сероводородной кислоты H2S. Свойства сульфидов сильно зависят от металлов, входящих в их состав.

Ионная связь — сильная химическая связь между атомами существенно отличающимися между собой по электроотрицательности.
Электрохимический ряд активности металлов (ряд напряжений, ряд (вытеснения) Бекетова, ряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов E0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me

Титриметрический анализ (титрование) — метод количественного/массового анализа, который часто используется в аналитической химии, основанный на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом. Титрование — процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать начиная от других отметок не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования определяют с помощью индикаторов или физико-химическими методами. По количеству затраченного на титрование рабочего раствора рассчитывают результаты анализа.
Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью, на которую подаётся газообразный водород с давлением в 1 атм. и погружённую в водный раствор, содержащий ионы водорода с активностью равной 1. Потенциал стандартного водородного электрода при стандартных условиях принят равным 0.
Изотопный обмен — процесс спонтанного перераспределения стабильных или радиоактивных изотопов какого-либо химического элемента между разными фазами системы. Ионный обмен может происходить:
- между агрегатными состояниями одного и того же вещества
- между частицами вещества
- внутри молекул

Окислительно-восстановительный потенциал (редокс-потенциал от англ. redox — reduction-oxidation reaction, Eh или Eh) — мера способности химического вещества присоединять электроны (восстанавливаться). Окислительно-восстановительный потенциал выражают в милливольтах (мВ). Примером окислительно-восстановительного электрода являются: Pt/Fe3+, Fe2+.
В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или Eθ, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой, как гальваническая ячейка, всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту.
Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар. Было выведено немецким физико-химиком Вальтером Нернстом.
Каломе́льный электро́д — электрод 2-го рода, использующийся в качестве электрода сравнения в электрохимической ячейке. Каломельный электрод состоит из платиновой проволочки, погружённой в каплю ртути, помещённую в насыщенный каломелью раствор хлорида калия определённой концентрации. Схематически электрохимическую систему электрода записывают следующим образом:
.
Двойно́й электри́ческий слой (межфазный) (ДЭС) — слой ионов, образующийся на поверхности твёрдого тела в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентирования полярных молекул на границе раздела фаз. Ионы, непосредственно связанные с поверхностью, называются потенциалоопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.

Концентрационный элемент — это гальванический элемент, состоящий из двух одинаковых металлических электродов, опущенных в растворы соли этого металла с различными концентрациями С1 > С2. Катодом в этом гальваническом элементе является электрод, погруженный в раствор с большей концентрацией, а анодом соответственно погруженным в раствор с меньшей концентрацией.

Экзергонические реакции, также самопроизвольные реакции — согласно второму началу термодинамики это химические реакции, которые протекают без притока энергии извне. Величина свободной энергии таких реакций всегда отрицательна, т.е. ΔG° < 0. Большинство химических реакций, которые протекают в окружающей среде — экзергонические, вследствие этого они являются термодинамически выгодными, в отличие от эндергонических. Примером экзергонических реакций являются процессы электролитической диссоциации, окисления и горения, сорбционные процессы, фотохимические процессы (фотодиссоциация), в живых организмах это процессы катаболизма — гликолиз, липолиз, протеолиз, окисление жирных кислот и многие другие.
Полуреакции — реакции окисления или восстановления компонента окислительно-восстановительной реакции. Полуреакции происходят с учётом изменения степеней окисления отдельных веществ, участвующих в окислительно-восстановительной реакции. Каждая полуреакция характеризуется электродным окислительно-восстановительным потенциалом, величина которого определяется лёгкость передачи электронов.

Гальванический анод является основным компонентом системы гальванической катодной защиты, используемой для защиты подземных или подводных металлических конструкций от коррозии.
В химии ряд реакционной способности — это эмпирическая, расчетная и структурно-аналитическая прогрессия ряда металлов, расположенная по их «реактивности» от высшей к низшей. Используется для обобщения сведений о реакциях металлов с кислотами и водой, реакциях одиночного вытеснения и извлечения металлов из их руд.