
Информа́тика — наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений.

Иску́сственный интелле́кт в самом широком смысле — это интеллект, демонстрируемый машинами, в частности компьютерными системами. Это область исследований в области компьютерных наук, которая разрабатывает и изучает методы и программное обеспечение, позволяющие машинам воспринимать окружающую среду и использовать обучение и интеллект для выполнения действий, которые максимально увеличивают их шансы на достижение поставленных целей. Такие машины можно назвать искусственным интеллектом.

Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Опти́ческие или фото́нные вычисли́тели — гипотетические вычислительные устройства, вычисления в которых производятся с помощью фотонов, излучаемыми лазерами или светодиодами.

Теория распознава́ния о́бразов — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу.
Когнитро́н — искусственная нейронная сеть на основе принципа самоорганизации. Своей архитектурой когнитрон похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением. Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путём моделирования организации зрительной коры.
Нейро́нная сеть Хо́пфилда — полносвязная нейронная сеть с симметричной матрицей связей. В процессе работы динамика таких сетей сходится (конвергирует) к одному из положений равновесия. Эти положения равновесия определяются заранее в процессе обучения, они являются локальными минимумами функционала, называемого энергией сети. Такая сеть может быть использована как автоассоциативная память, как фильтр, а также для решения некоторых задач оптимизации. В отличие от многих нейронных сетей, работающих до получения ответа через определённое количество тактов, сети Хопфилда работают до достижения равновесия, когда следующее состояние сети в точности равно предыдущему: начальное состояние является входным образом, а при равновесии получают выходной образ.
Компью́теры пя́того поколе́ния — в соответствии с идеологией развития компьютерных технологий, после четвёртого поколения, построенного на сверхбольших интегральных схемах, ожидалось создание следующего поколения, ориентированного на распределённые вычисления, одновременно считалось, что пятое поколение станет базой для создания устройств, способных к имитации мышления.
Нейрокомпьютер — устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика же нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей.

Перцептро́н — математическая или компьютерная модель восприятия информации мозгом, предложенная Фрэнком Розенблаттом в 1957 году и впервые воплощённая в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером.

Оптическое распознавание символов — механический или электронный перевод изображений рукописного, машинописного или печатного текста в текстовые данные, использующиеся для представления символов в компьютере. Распознавание широко применяется для преобразования книг и документов в электронный вид, для автоматизации систем учёта в бизнесе или для публикации текста на веб-странице. Оптическое распознавание символов позволяет редактировать текст, осуществлять поиск слов или фраз, хранить его в более компактной форме, демонстрировать или распечатывать материал, не теряя качества, анализировать информацию, а также применять к тексту электронный перевод, форматирование или преобразование в речь. Оптическое распознавание текста является исследуемой проблемой в областях распознавания образов, искусственного интеллекта и компьютерного зрения.

Нейро́нная сеть Ко́ско, Двунапра́вленная ассоциати́вная па́мять (ДАП) — нейронная сеть, разработанная Бартом Коско. Это однослойная нейронная сеть с обратными связями, базируется на двух идеях: адаптивной резонансной теории Стефана Гросберга и автоассоциативной памяти Хопфилда.

Перцептрон является одной из первых моделей искусственной нейронной сети. Несмотря на то, что модель предложена Фрэнком Розенблаттом в 1957 году, о её возможностях и ограничениях до сегодняшнего дня не всё известно. В 1969 году Марвин Минский и Сеймур Паперт посвятили критике перцептрона целую книгу, которая показала некоторые принципиальные ограничения одной из разновидности перцептронов.
Биокомпьютинг — биологическое направление в искусственном интеллекте, сосредоточенное на разработке и использовании компьютеров, которые функционируют как живые организмы или содержат биологические компоненты, так называемые биокомпьютеры.
Вычислительный интеллект — ответвление искусственного интеллекта. Как альтернатива классическому искусственному интеллекту, основанному на строгом логическом выводе, он опирается на эвристические алгоритмы, используемые, например, в нечёткой логике, искусственных нейронных сетях и эволюционном моделировании. Кроме того, вычислительный интеллект охватывает такие области как роевой интеллект, фракталы и теория хаоса, искусственная иммунная система, вейвлеты и т. д.
Витáлий Алексáндрович Я́щенко — учёный-кибернетик, создатель нового класса нейронных сетей — нейроподобные растущие сети (1993), старший научный сотрудник ИПММС НАН Украины (1995), ученый секретарь секции Математические машины и системы научного семинара по проблеме Кибернетика НАН Украины (1994), член Ассоциации создателей и пользователей интеллектуальных систем (1995), зам. главного редактора международного журнала «Математические машины и системы» (1996), доцент кафедры ММЭД Факультета кибернетики Национального университета им. Т. Г. Шевченко, Украина (1996), профессор Донецкого Государственного университета информатики и искусственного интеллекта (1996), член международного общества информационное слияние (1999).
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Нейро́нный проце́ссор — это специализированный класс микропроцессоров и сопроцессоров, используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.

В параллельных компьютерных архитектурах систолический массив представляет собой однородную сеть тесно связанных блоков обработки данных (DPU), называемых ячейками или узлами. Каждый узел независимо и параллельно вычисляет частичный результат как функцию данных, полученных от его вышестоящих соседей, сохраняет результат внутри себя и передает его нижестоящим узлам. Систолические массивы были впервые использованы в Colossus Mark II в 1944 году, одном из первых компьютеров, использовавшихся для взлома немецких шифров Лоренца. Из-за секретности компьютеров Colossus систолические массивы были независимо заново открыты Х. Т. Кунгом и Чарльзом Лейзерсоном, которые описали массивы для множества вычислений плотной линейной алгебры для ленточных матриц. Ранние применения включают вычисление наибольших общих делителей целых чисел и многочленов. Иногда их классифицируют как архитектуры с несколькими инструкциями и одними данными (MISD) согласно таксономии Флинна, но эта классификация вызывает сомнения, поскольку можно предложить убедительные аргументы для выделения систолических массивов в отдельную группу, отличную от любой из четырех категорий Флинна: SISD, SIMD, MISD, MIMD, как это обсуждается позже в этой статье.