
Геоме́трия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. В практических задачах геометрия позволяет предсказывать геометрические размеры тела, зная другие геометрические размеры этого тела с помощью известных геометрических законов.
Ри́манова геоме́трия — раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, то есть гладкие многообразия с дополнительной структурой, римановой метрикой, иначе говоря — с выбором евклидовой метрики на каждом касательном пространстве, причём эта метрика гладко меняется от точки к точке. Иногда, особенно часто в математической физике, под римановой геометрией подразумевают также и псевдориманову геометрию многообразий с псевдоримановой метрикой, например, геометрию пространства-времени специальной и общей теории относительности.
Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.

Иога́нн Карл Фри́дрих Га́усс — немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков».

То́чка — один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом. Нестрого можно представлять точку как неделимый элемент соответствующего математического пространства, определяемого в геометрии, математическом анализе и других разделах математики. В классической геометрии и в большинстве её обобщений все геометрические фигуры считаются состоящими из точек.
Кривизна́ — собирательное название ряда характеристик, описывающих отклонение того или иного геометрического «объекта» от соответствующих «плоских» объектов.

Теорема Лиувилля о конформных отображениях утверждает, что
Точка округления ― точка на гладкой регулярной поверхности в евклидовом пространстве, в которой нормальные кривизны по всем направлениям равны.

Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Многообра́зие — локально евклидово пространство.
Вторая квадратичная форма поверхности ― квадратичная форма на касательном расслоении поверхности, которая, в отличие от первой квадратичной формы, определяет внешнюю геометрию поверхности в окрестности данной точки.
Формула Гаусса — выражение для гауссовой кривизны поверхности в трёхмерном римановом пространстве через главные кривизны и секционную кривизну объемлющего пространства. В частности, если объемлющее пространство евклидово, то гауссова кривизна поверхности равна произведению главных кривизн в этой точке.
Геодезическая кривизна
кривой
в римановой геометрии измеряет, насколько далеко кривая отличается от геодезической. Например, для 1D кривой на 2D поверхности, вложенной в 3D пространство, это кривизна кривой, спроецированной на плоскость, касательную к поверхности. Более обще, в заданном многообразии
геодезическая кривизна ― это обычная кривизна кривой
. Однако если кривая
лежит в подмногообразии
многообразия
, геодезическая кривизна относится к кривизне
в
, и она отличается в общем виде от кривизны
в объемлющем многообразии
. (Объемлющая) кривизна
кривой
зависит от двух факторов ― кривизны подмногообразия
в направлении
, которая зависит только от направления кривой и кривизны
в многообразии
, которая является величиной второго порядка. Связь между ними ―
. В частности, геодезические на
имеют нулевую геодезическую кривизну («прямые»), так что
.

Трансверсальность — условие общего положения на пересечение гладких многообразий. Иногда используется обозначение

Дифференциальная геометрия поверхностей — исторически важная область дифференциальной геометрии.
Гладкое многообразие — многообразие, наделенное гладкой структурой. Гладкие многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях вводятся дополнительные инфинитезимальные структуры — касательное пространство, ориентация, метрика, связность и т. д., и изучаются те свойства, связанные с этими объектами, которые инвариантны относительно группы диффеоморфизмов, сохраняющих дополнительную структуру.

Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Theorema Egregium — исторически важный результат в дифференциальной геометрии, доказанный Гауссом. В современной формулировке теорема утверждает следующее:
- Гауссова кривизна является внутренним инвариантом поверхности. Иными словами, гауссова кривизна может быть определена исключительно путём измерения углов, расстояний внутри самой поверхности и не зависит от конкретной её реализации в трёхмерном евклидовом пространстве.
Характеристические классы — это далеко идущее обобщение таких количественных понятий элементарной геометрии, как степень плоской алгебраической кривой или сумма индексов особых точек векторного поля на поверхности. Более подробно они описаны в соответствующей статье. Теория Черна — Вейля позволяет представлять некоторые характеристические классы как выражения от кривизны.

Клод Лебрю́н — североамериканский геометр, специалист в комплексной и дифференциальной геометрии, в первую очередь четырёхмерных многообразий, а также теории относительности. Профессор Университета штата Нью-Йорк в Стони-Бруке.