
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов, поэтому изначальная форма теории известна как наивная теория множеств. В XX веке теория получила существенное методологическое развитие, были созданы несколько вариантов аксиоматической теории множеств, обеспечивающие универсальный математический инструментарий, в связи с вопросами измеримости множеств тщательно разработана дескриптивная теория множеств.

Число́ — одно из основных понятий математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей.

Натура́льные чи́сла — числа, возникающие естественным образом при счёте. Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом.
Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.

Веще́ственное число́ — математический объект, возникший из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких вычислительных операций, как извлечение корня, вычисление логарифмов, решение алгебраических уравнений, исследование поведения функций.
Бесконе́чное мно́жество — множество, не являющееся конечным. Можно дать ещё несколько эквивалентных определений бесконечного множества:
- Множество, в котором для любого натурального числа
найдётся конечное подмножество из
элементов. - Множество, в котором найдётся счётное подмножество.
- Множество, в котором найдётся подмножество, равномощное некоторому (ненулевому) предельному ординалу.
- Множество, для которого существует биекция с некоторым его собственным подмножеством.

Гео́рг Фе́рдинанд Лю́двиг Фи́липп Ка́нтор — немецкий математик, ученик Карла Вейерштрасса. Наиболее известен как создатель теории множеств. Основатель и первый президент Германского математического общества, инициатор создания Международного конгресса математиков.
Конечное множество — множество, равномощное отрезку натурального ряда, а также пустое множество, называется конечным. В противном случае множество называется бесконечным. Например,


Бесконе́чность — категория человеческого мышления, используемая для характеристики безграничных, беспредельных, неисчерпаемых предметов и явлений, для которых невозможно указание границ или количественной меры. Используется в противоположность конечному, исчисляемому, имеющему предел. Систематически исследуется в математике, логике и философии, также изучаются вопросы о восприятии, статусе и природе бесконечности в психологии, теологии, физике соответственно. Бесконечность обозначается символом
.
Парадоксами теории множеств называют
- рассуждения, демонстрирующие противоречивость наивной теории множеств, такие как
- парадокс Бурали-Форти (1897)
- парадокс Кантора (1899)
- парадокс Рассела (1901)
- рассуждения, результат которых интуитивно кажется ложным или «парадоксальным», но которые, тем не менее, являются следствием аксиом формальной теории множеств, включая:
- предложенный Бертраном Расселом «парадокс Тристрама Шенди», демонстрирующий нарушение принципа «часть меньше целого» для бесконечных множеств,
- нетривиальные следствия аксиомы выбора:
- парадокс Банаха — Тарского,
- парадокс Хаусдорфа;
- особое место занимает парадокс Скулема, представляющий собой ошибочное рассуждение, которое может быть допущено неспециалистом при применении теоремы Лёвенгейма — Скулема к аксиоматической теории множеств.
Нестандартный анализ — альтернативный подход к обоснованию и построению математического анализа, в котором бесконечно малые — не переменные величины, а особый вид чисел. В нестандартном анализе на современной основе реализуется восходящая к Лейбницу и его последователям идея о существовании бесконечно малых величин, отличных от нуля, — идея, которая в историческом развитии математического анализа была заменена понятием предела переменной величины. Недоверие к актуальным бесконечным величинам в математике объяснялось трудностями их формального обоснования. Любопытно, что представления об актуальных бесконечно больших и бесконечно малых величинах сохранялись в учебниках физики и других естественных наук, где часто встречаются фразы вроде «пусть
— элемент объёма…».
Равномощность — отношение двух произвольных множеств, означающее, нестрого говоря, что одно множество содержит столько же элементов, сколько и другое. Конечные множества равномощны тогда и только тогда, когда они содержат одинаковое число элементов. Например, множество традиционных зодиакальных созвездий и множество рёбер куба равномощны, так как оба содержат по 12 элементов.
Непреры́вность действи́тельных чи́сел — свойство системы действительных чисел
, которым не обладает множество рациональных чисел
. Иногда вместо непрерывности говорят о полноте системы действительных чисел. Существует несколько различных формулировок свойства непрерывности, наиболее известные из которых: принцип непрерывности действительных чисел по Дедекинду, принцип вложенных отрезков Коши — Кантора, теорема о точной верхней грани. В зависимости от принятого определения действительного числа, свойство непрерывности может либо постулироваться как аксиома — в той или иной формулировке, либо доказываться в качестве теоремы.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Основа́ния матема́тики — система общих для всей математики понятий, концепций и методов, с помощью которых строятся различные её разделы.
Темпоральный финитизм — учение о том, что время конечно в прошлом. Согласно философским воззрениям Аристотеля, изложенным в его «Физике», хотя пространство конечно, время бесконечно. Это учение создало проблемы для средневековых исламских, иудейских и христианских философов, которые были не в состоянии примирить аристотелевскую концепцию вечности с библейским повествованием о сотворении мира.
Шенди:
- Шенди — город на востоке Судана, в штате Нил.
- Шенди — отличительный признак правоверного индуса — пучок волос на макушке бритой головы. Отсюда «шендидхарма».
- «Тристрам Шенди» (1759—1767) — юмористический роман британца Лоренса Стерна в девяти томах.