
Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается в квантовой электродинамике как поглощение и испускание частицами фотонов.
Зако́н сохране́ния электри́ческого заря́да — закон физики, утверждающий, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется:

В квантовой физике золотое правило Ферми — это формула, которая использует временную теорию возмущений в нерелятивистской квантовой механике и описывает скорость перехода их одного собственного состояния энергии квантовой системы к группе собственных состояний энергии в непрерывном спектре (континууме) в результате слабого возмущения. Эта скорость перехода фактически не зависит от времени и пропорциональна силе связи между начальным и конечным состояниями системы, а также плотности состояний. Золотое правило Ферми также применимо, когда конечное состояние дискретно, то есть оно не является частью континуума, если в процессе имеет место некоторая декогеренция, например релаксация или столкновение атомов, или шум в возмущении, и в этом случае плотность состояний заменяется выражением, учитывающим конечное время жизни.

Графе́н — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp2-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость слоистого графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью. Высокая подвижность носителей заряда, которая оказывается максимальной среди всех известных материалов, делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.
Гига́нтское магнетосопротивле́ние, гигантское магнитосопротивление, ГМС — квантовомеханический эффект, наблюдаемый в тонких металлических плёнках, состоящих из чередующихся ферромагнитных и проводящих немагнитных слоёв. Эффект состоит в существенном изменении электрического сопротивления такой структуры при изменении взаимного направления намагниченности соседних магнитных слоёв. Направлением намагниченности можно управлять, например, приложением внешнего магнитного поля. В основе эффекта лежит рассеяние электронов, зависящее от направления спина. За открытие гигантского магнетосопротивления в 1988 году физики Альбер Ферт и Петер Грюнберг были удостоены Нобелевской премии по физике в 2007 году.
Ква́нтовый эффе́кт Хо́лла в графене или необы́чный ква́нтовый эффе́кт Хо́лла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа или двумерного дырочного газа в сильных магнитных полях в графене. Этот эффект был предсказан теоретически и подтверждён экспериментально в 2005 году.
Графеновые наноленты — узкие полоски графена с шириной порядка 10—100 нм. По своим физическим свойствам отличаются от более широких образцов, которые имеют линейный закон дисперсии, как в бесконечном графене. Наноленты интересны тем, что обладают нелинейным законом дисперсии и полупроводниковыми свойствами из-за наличия запрещённой зоны, которая зависит от ширины ленты и расположения атомов на границах. Графеновые наноленты благодаря этому рассматриваются как важный шаг в создании транзистора на основе графена, который будет работать при комнатной температуре.
Уравнение Власова — кинетическое уравнение для функции распределения частиц плазмы, описывающее их динамику в электромагнитных полях посредством самосогласованного поля. Впервые предложено А. А. Власовым в статье и позднее излагается в монографии.

Андреевское отражение — процесс отражения электрона, падающего из нормального металла на границу со сверхпроводником, при котором электрон превращается в дырку, меняет обе компоненты скорости на противоположные, а в сверхпроводник попадает два электрона. Названо по имени Александра Фёдоровича Андреева, теоретически предсказавшего такой тип отражения в 1964 году . В то же время существует зеркальное андреевское отражение, при котором дырка не меняет проекцию скорости на границу. Этот эффект предсказан Бинаккером в 2006 году.

В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.
Уравнение Рариты — Швингера — дифференциальное уравнение, описывающее частицы со спином 3/2. Оно было получено Раритой и Швингером в 1941 году.
Квантовая ёмкость — дополнительная электрическая ёмкость между затвором и двумерным электронным газом (ДЭГ), возникающая благодаря низкой по сравнению с металлами плотностью состояний в ДЭГ. Этот термин был впервые введен Сержем Лурьи в 1987 году для характеристики изменения химического потенциала в инверсионных слоях кремния и ДЭГ в GaAs.
Модель Бозе — Хаббарда даёт примерное описание физики взаимодействия бозонов на пространственной решётке. Она тесно связана с моделью Хаббарда, возникшей в физике твёрдого тела как приближённое описание сверхпроводящих систем и движения электронов между атомами твёрдого кристаллического вещества. Слово Бозе указывает на тот факт, что частица в системе — бозон. Впервые модель была введена Х. Гершем и Г. Ноллмэном в 1963 году, модель Бозе — Хаббарда может использоваться при изучении систем подобных бозонным атомам в оптической решётке. В противоположность этому, модель Хаббарда применима к фермионам (электронам), а не бозонам. Кроме того, модель обобщается на сочетания Бозе- и Ферми-частиц, в этом случае, в соответствии с гамильтонианом, модель будет называться моделью Бозе — Ферми — Хаббарда.
Кулоновское увлечение — процесс взаимодействия пространственно разделённых зарядов посредством кулоновского взаимодействия. Проявляется в двухслойных структурах с металлическими слоями, разделёнными туннельно непрозрачным изолятором, когда ток, протекающий в одном из слоёв, создаёт ток в другом слое при замкнутой электрической цепи в этом слое или напряжение при разомкнутой цепи. Эффект был теоретически предсказан в работе советского учёного М. Б. Погребинского.
Алекса́ндр Моисе́евич Финкельште́йн — советский и американский физик, доктор физико-математических наук.
Переход Мотта — резкое изменение электропроводности твердого тела при увеличении концентрации носителей заряда, обусловленная экранированием кулоновского взаимодействия между электронами и дырками.
Приближение локальной плотности (англ. Local density approximation, LDA) — класс приближений обменно-корреляционного взаимодействия в теории твёрдого тела и квантовой химии, в частности в теории функционала плотности, в которых учитывается плотность электронов в той точке пространства, о которой идет речь. Вывести поправки к обменно-корреляционной взаимодействия можно разными методами, однако успешные связаны с подходом однородного электронного газа. В этом отношении LDA целом синонимично с функционалом на основе модели желе, которые тогда можно применять для исследования реалистичных систем.

Осцилляции Фриделя — периодическое распределение электронной плотности, возникающее при экранировании электрического заряда дефекта в металле или вырожденном полупроводнике. Это квантовый эффект, обусловленный интерференцией электронных волн зарядов, рассеивающихся на дефекте. Двумерные фриделевские осцилляции поверхностных состояний металла могут наблюдаться с помощью сканирующего туннельного микроскопа. Осцилляции плотности заряда вокруг дефекта названы в честь теоретически предсказавшего их в 1952 году французского физика Жака Фриделя.

Мириам Паула Сарачик — американский физик-экспериментатор бельгийского происхождения, профессор Городского колледжа Нью-Йорка, член Национальной академии наук США.
Проходя через материал, фононы могут рассеиваться по нескольким механизмам: фонон-фононное рассеяние переброса, рассеяние на примесях или дефектах кристаллической решётки, фонон-электронное рассеяние и рассеяние на границе образца. Каждый механизм рассеяния можно охарактеризовать скоростью релаксации 1/
, обратному соответствующему времени релаксации.