Алгори́тм — совокупность точно заданных правил решения некоторого класса задач или набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться в произвольном порядке, параллельно, если это позволяют используемые исполнители.
Коне́чный автома́т (КА) в теории алгоритмов — математическая абстракция, модель дискретного устройства, имеющего один вход, один выход и в каждый момент времени находящегося в одном состоянии из множества возможных. Является частным случаем абстрактного дискретного автомата, число возможных внутренних состояний которого конечно.
Те́зис Чёрча — Тью́ринга — логико-математический принцип, устанавливающий эквивалентность между интуитивным понятием алгоритмической вычислимости и строго формализованными понятиями частично рекурсивной функции и функции, вычислимой на машине Тьюринга. В связи с интуитивностью исходного понятия алгоритмической вычислимости, данный тезис носит характер суждения об этом понятии и его невозможно строго доказать или опровергнуть. Перед точным определением вычислимой функции математики часто использовали неофициальный термин, «эффективно вычислимый» для описания функций, которые можно вычислить с помощью «бумажно-карандашных» методов.
Маши́на Тью́ринга (Шаблон:Сокр) — абстрактный исполнитель. Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Универсальной машиной Тью́ринга называют машину Тьюринга, которая может заменить собой любую машину Тьюринга. Получив на вход программу и входные данные, она вычисляет ответ, который вычислила бы по входным данным машина Тьюринга, чья программа была дана на вход.
Проблема остановки — одна из проблем в теории алгоритмов, которая может неформально быть поставлена в виде:
- Даны описание процедуры и её начальные входные данные. Требуется определить: завершится ли когда-либо выполнение процедуры с этими данными; либо, что процедура всё время будет работать без остановки.
Кле́точный автома́т — дискретная модель, изучаемая в математике, теории вычислимости, физике, теоретической биологии и микромеханике. Основой является пространство из прилегающих друг к другу клеток (ячеек), образующих решётку. Каждая клетка может находиться в одном из конечного множества состояний. Решётка может быть любой размерности, бесконечной или конечной, для решётки с конечными размерами часто предусматривается закольцованность при достижении предела (границы). Для каждой клетки определено множество клеток, называемых окрестностью. Например, окрестность фон Неймана ранга 2 включает все клетки на расстоянии не более 2 от текущей. Устанавливаются правила перехода клеток из одного состояния в другое. Обычно правила перехода одинаковы для всех клеток. Один шаг автомата подразумевает обход всех клеток и на основе данных о текущем состоянии клетки и её окрестности определение нового состояния клетки, которое будет у неё при следующем шаге. Перед стартом автомата оговаривается начальное состояние клеток, которое может устанавливаться целенаправленно или случайным образом.
В теории алгоритмов классом P называют множество задач, для которых существуют «быстрые» алгоритмы решения. Класс P включён в более широкие классы сложности алгоритмов.
Теория автоматов — раздел дискретной математики, изучающий абстрактные автоматы — вычислительные машины, представленные в виде математических моделей, и задачи, которые они могут решать.
Switch-технология — технология разработки систем логического управления на базе конечных автоматов, охватывающая процесс спецификации, проектирования, реализации, отладки, верификации, документирования и сопровождения. Предложена А. А. Шалыто в 1991 году.
Контекстно-свободная грамматика — частный случай формальной грамматики, у которой левые части всех продукций являются одиночными нетерминалами. Смысл термина «контекстно-свободная» заключается в том, что есть возможность применить продукцию к нетерминалу, причём независимо от контекста этого нетерминала.
Сеть Петри — математический объект, используемый для моделирования динамических дискретных систем, предложенный Карлом Петри в 1962 году.
В разделе информатики — алгоритмической теории информации, константа Хайтина или вероятность остановки — вещественное число, которое, неформально говоря, является вероятностью того, что произвольно выбранная программа остановится. Существование таких чисел было продемонстрировано Грегори Хайтином.
Вычисли́мые фу́нкции — множество функций то есть отображения множества натуральных чисел во множество натуральных чисел, в математических обозначениях это которые могут быть реализованы некоторым, алгоритмом, описание которого конечно, например, описанием переходов некоторой машиной Тьюринга.
В математике, логике и информатике рекурсивно перечислимым языком называется тип формального языка, также известный как частично разрешимый, или распознаваемый по Тьюрингу. В иерархии Хомского он известен как язык типа 0. Класс всех рекурсивно перечислимых языков называется RE.
Цифровая физика — совокупность теоретических взглядов, основанных на интерпретации, что Вселенная по сути является информацией и, следовательно, является вычислимой. Из данной идеи следует, что Вселенная может пониматься как результат работы некоторой компьютерной программы или как некий вид цифрового вычислительного устройства.
Теория сложности вычислений — подраздел теоретической информатики, занимающейся исследованием сложности алгоритмов для решения задач на основе формально определённых моделей вычислительных устройств. Сложность алгоритмов измеряется необходимыми ресурсами, в основном это продолжительность вычислений или необходимый объём памяти. В отдельных случаях исследуются другие степени сложности, такие как размер микросхем, или количество процессоров, необходимая для работы параллельных алгоритмов.
Машина вероятности – математическая модель вычислительного устройства, в работе которого участвует некоторый случайный процесс. Различные варианты понятия «Машины вероятности» являются обобщениями понятий «автомата детерминированного», «Тьюринга машина», «автомата бесконечного». Рассматривались, например, такие понятия «машины вероятности», как: 1)Машина Тьюринга с входом, к которому присоединен бернуллиевский датчик, выдающий символ 1 и 0 с вероятностью p и 1 – p соответственно. 2) Машина вероятности, которая получается из машин Тьюринга, если для данного обозреваемого символа и внутреннего состояния задается не единственная комбинация символ, состояние, сдвиг», а таблица вероятностей осуществления машиной каждой такой комбинации. Бесконечный автомат со счетным множеством состояний, для каждой пары состояний которого указывается вероятность того, что автомат, находясь в 1-м состоянии, перейдет во 2-е. Различные понятия Машина вероятности выражают различные уровни и цели абстракции.
В теории вычислимости редукция Тьюринга от проблемы A к проблеме B — это редукция, которая решает A, при условии, что решение B уже известно. Ее можно понимать как алгоритм, который можно было бы использовать для решения A, если бы он имел доступную подпрограмму для решения B. Более формально редукция Тьюринга — это функция, вычисляемая машиной-оракулом с оракулом для B.