В математике формула Стирлинга — формула для приближённого вычисления факториала и гамма-функции. Названа в честь Джеймса Стирлинга и Абрахама де Муавра, последний считается автором формулы.
Преобразование Фурье́ — операция, сопоставляющая одной функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Вы́чет в комплексном анализе — объект, характеризующий локальные свойства заданной функции или формы.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости. В теорию характеристических функций внесли большой вклад Ю. В. Линник, И. В. Островский, К. Р. Рао, Б. Рамачандран.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам. Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля.
АТС теорема — теорема об аппроксимации тригонометрической суммы более короткой.
Фундаментальное решение линейного дифференциального оператора L или, эквивалентно, соответствующего ему линейного уравнения в частных производных — математическое понятие, обобщающее идею функции Грина для дифференциальных операторов, без связи с какой-либо областью и граничными условиями.
Фазированной антенной решёткой называют антенную решётку, фазой токов (поля) в каждом из элементов которой можно управлять.
Тригонометрический ряд Фурье — представление произвольной функции с периодом в виде ряда
В байесовской статистике априорная вероятность Джеффри, по имени Гарольда Джеффри — неинформативная (объективная) априорная вероятность в пространстве параметра, пропорциональная квадратному корню из детерминанта информации Фишера:
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Пропагатор в квантовой механике и квантовой теории поля (КТП) — функция, характеризующая распространение релятивистского поля от одного акта взаимодействия до другого. Эта функция определяет амплитуду вероятности перемещения частицы из одного места пространства в другое за заданный промежуток времени или перемещения частицы с определённой энергией и импульсом. Для расчёта частоты столкновений в КТП используются виртуальные частицы, представленные в диаграммах Фейнмана пропагаторами, вносят свой вклад в вероятность рассеяния, описываемого соответствующей диаграммой. Их также можно рассматривать как оператор, обратный волновому оператору, соответствующему частице, и поэтому их часто называют (причинными) функциями Грина.
Теорема Сохоцкого — Племеля — теорема в комплексном анализе, которая помогает в оценке определенных интегралов. Версия для вещественной прямой часто используется в физике, хотя и редко называется по имени. Теорема названа в честь Юлиана Сохоцкого, который доказал её в 1868 году, и Иосифа Племеля, который заново открыл её в качестве основного ингредиента своего решения задачи Римана — Гильберта в 1908 году.
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Уравнение Лейна — Эмдена в астрофизике — безразмерная форма уравнения Пуассона для гравитационного потенциала ньютоновской самогравитирующей сферически-симметричной политропной жидкости. Уравнение носит название по фамилиям астрофизиков Джонатана Лейна и Роберта Эмдена. Уравнение имеет вид
Векторными сферическими гармониками являются векторные функции, преобразующиеся при вращениях системы координат так же, как скалярные сферические функции с теми же индексами, или определенные линейные комбинации таких функций.
Дифференциальное сечение рассеяния — отношение числа частиц, рассеянных за единицу времени в элемент телесного угла dW, к плотности потока падающих частиц.