Ма́сса — скалярная физическая величина, определяющая инерционные и гравитационные свойства тел в ситуациях, когда их скорость намного меньше скорости света. В обыденной жизни и в физике XIX века масса синонимична весу.
Электро́н — субатомная частица, чей электрический заряд отрицателен и равен по модулю одному элементарному электрическому заряду. Электроны принадлежат к первому поколению лептонных частиц и обычно считаются фундаментальными частицами, поскольку у них нет известных компонентов или субструктур. Электрон имеет массу, которая составляет приблизительно 1/1836 массы протона. Квантово-механические свойства электрона включают собственный угловой момент (спин) полуцелого значения, выраженного в единицах приведённой постоянной Планка, ħ, что делает их фермионами. В связи с этим никакие два электрона не могут занимать одно и то же квантовое состояние в соответствии с принципом запрета Паули. Как и все элементарные частицы, электроны обладают свойствами как частиц, так и волн: они могут сталкиваться с другими частицами и могут дифрагировать как свет. Волновые свойства электронов легче наблюдать экспериментально, чем свойства других частиц, таких как нейтроны и протоны, потому что электроны имеют меньшую массу и, следовательно, большую длину волны де Бройля для равных энергий.
Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.
Электро̀нво́льт — внесистемная единица энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и в близких и родственных областях науки . В Российской Федерации электронвольт допущен к использованию в качестве внесистемной единицы без ограничения срока с областью применения «физика».
Тёмная эне́ргия в космологии — гипотетический вид энергии, введённый в математическую модель Вселенной для объяснения наблюдаемого её расширения с ускорением.
Эта статья включает описание термина «энергия покоя»
Дефе́кт ма́ссы ΔM — разность между суммой масс отдельных составляющих какой-либо связанной физической системы взаимодействующих объектов, находящихся в свободном состоянии, и массой само́й этой системы. В таком определении знак дефекта масс положителен; иногда дефект масс определяют как разность между массой системы и суммой масс компонент, в этом случае знак отрицателен. С точностью до коэффициента c2 дефект массы равен энергии связи Eсв системы:
Энергия вакуума это сумма энергий наинизших энергетических состояний всех квантованных полей в вакууме. Энергия вакуума однородна в пространстве и постоянна во времени. Плотность её является мировой константой.
Принцип эквивалентности сил гравитации и инерции — эвристический принцип, использованный Альбертом Эйнштейном при выводе общей теории относительности. Его краткая формулировка: гравитационная и инертная массы любого тела равны. Строже, экспериментально доказана пропорциональность масс двух типов, благодаря которой их стало возможным сделать в теории равными путём подбора гравитационной постоянной .
При́нцип Ланда́уэра — принцип, сформулированный в 1961 году Рольфом Ландауэром (IBM) и гласящий, что в любой вычислительной системе, независимо от её физической реализации, при потере 1 бита информации выделяется теплота в количестве по крайней мере W джоулей:
Ро́берт Ге́нри Ди́кке — американский физик, член Национальной академии наук США с 1967 года, известный своими работами в области астрофизики, атомной физики, космологии и гравитации. Один из первых разработчиков теории электрических цепей с распределёнными параметрами.
Преде́л Бремерма́нна, названный в честь Ханса-Йоахима Бремермана — максимальная скорость вычислений автономной системы в материальной вселенной. Выводится из эйнштейновской эквивалентности массы-энергии и соотношений неопределённости Гейзенберга и составляет c2/h ≈ 1,36 × 1050 бит в секунду на килограмм. Эта величина играет важную роль при разработке криптографических алгоритмов, поскольку позволяет определить минимальный размер ключей шифрования или хеш-значений, необходимых для создания алгоритма шифрования, который не может быть взломан путём перебора.
Звезда тёмной энергии — гипотетический астрономический объект, теоретическая альтернатива чёрным дырам.
В теоретической физике отрицательная масса — это тип экзотической материи, масса которой имеет противоположный знак по отношению к массе нормальной материи, например −1 кг. Такая материя нарушила бы одно или несколько энергетических условий и показала бы некоторые странные свойства, такие как противоположно ориентированное ускорение для отрицательной массы. Она используется в некоторых умозрительных гипотетических технологиях, таких как путешествия во времени в прошлое строительство проходимых искусственных червоточин, которые также могут позволить путешествия во времени, трубы Красникова, привод Алькубьерре и, возможно, другие типы скоростных поездов. легкие варп-приводов. В настоящее время ближайшим известным реальным представителем такой экзотической материи является область отрицательной плотности давления, создаваемая эффектом Казимира.
Несингулярные модели чёрных дыр — математические теории, описывающие чёрные дыры без возникновения парадоксов, возникающих в стандартной модели чёрной дыры, в том числе парадоксов исчезновения информации и ненаблюдаемости горизонта событий чёрной дыры.
Обратимые вычисления — модель вычислений, в которой процесс вычисления является в некоторой степени обратимым. Например, в вычислительной модели, использующей наборы состояний и переходов между ними, необходимым условием обратимости вычислений является возможность построения однозначного (инъективного) отображения каждого состояния в следующее за ним. На XX век и начало XXI века обратимые вычисления обычно относят к нетрадиционным моделям вычислений.
В физике, предел Бекенштейна — это верхний предел энтропии S, или количества информации I, которые могут содержаться в заданной ограниченной области пространства, имеющей конечное количество энергии; либо, с другой стороны, максимальное количество информации, необходимое для идеального описания заданной физической системы вплоть до квантового уровня. Это подразумевает, что информация о физической системе, или информация, необходимая для идеального описания системы, должна быть конечной, если система занимает конечное пространство и имеет конечную энергию. С точки зрения информатики это означает, что имеется максимум скорости обработки информации для физической системы, которая имеет конечные размеры и энергию, и что машина Тьюринга с конечными физическими размерами и неограниченной памятью физически нереализуема.
Э́ллиот Ге́ршель Либ — американский математик и физик, профессор Принстонского университета. Труды преимущественно в области математической физики, статистической механики, теории конденсированного состояния и функционального анализа. В частности, внёс вклад в такие темы, как квантовая механика, классическая проблема многих тел, структура атома, стабильность материи, функциональные неравенства, теория магнетизма, модель Хаббарда. Всего опубликовал более 400 книг и статей.
Статьи annus mirabilis — четыре статьи 1905 года, опубликованные Альбертом Эйнштейном в научном журнале Annalen der Physik. Эти четыре статьи стали крупным вкладом в фундамент современной физики, произведя революцию в научном понимании фундаментальных понятий пространства, времени, массы и энергии. Поскольку Эйнштейн опубликовал эти замечательные статьи в течение одного года, 1905 год называется annus mirabilis Эйнштейна.
- Первая статья объяснила фотоэффект, установив энергию квантов света. . В 1921 году за эту работу Эйнштейн получил Нобелевскую премию по физике.
- Вторая статья объяснила броуновское движение, установив соотношение Эйнштейна и заставила сопротивляющихся физиков признать существование атомов.
- Третья статья представила специальную теорию относительности Эйнштейна, которая установила универсальную постоянную скорость света для всех систем отсчета и теории пространства-времени.
- Четвёртая статья, следствие специальной теории относительности, развила принцип эквивалентности массы и энергии, выраженный в знаменитом уравнении и что привело к открытию и использованию атомной энергии.
Стабильность материи — задача строгого доказательства того, что большое количество заряженных квантовых частиц может сосуществовать и образовывать макроскопические объекты, такие как обычная материя. Первое доказательство было предоставлено Фриманом Дайсоном и Эндрю Ленардом в 1967—1968 годах, но более короткое и более концептуальное доказательство было найдено позже Эллиоттом Либом и Уолтером Тиррингом в 1975 году.