
А́льфа-распа́д (α-распад) — вид радиоактивного распада ядра, в результате которого происходит испускание дважды магического ядра гелия 4He — альфа-частицы. При этом массовое число ядра в соответствии с правилом радиоактивных смещений Содди и Фаянса уменьшается на 4, а атомный номер — на 2.

Бе́та-части́цы — электроны и позитроны, которые вылетают из атомных ядер некоторых радиоактивных веществ при радиоактивном бета-распаде. Направление движения бета-частиц меняется магнитными и электрическими полями, что свидетельствует о наличии в них электрического заряда. Скорости электронов достигают 0,998 скорости света. Бета-частицы ионизируют газы, вызывают люминесценцию многих веществ, действующих на фотоплёнки. Поток бета-частиц называют бета-излучением.
Изомери́я а́томных я́дер — явление существования у ядер атомов метастабильных (изомерных) возбуждённых состояний с достаточно большим временем жизни.

Двойной бета-распад, 2β-распад, ββ-распад — общее название нескольких видов радиоактивного распада атомного ядра, которые обусловлены слабым взаимодействием и изменяют заряд ядра на две единицы.
Ма́ссовое число́ атомного ядра — суммарное количество протонов и нейтронов в ядре. Обычно обозначается буквой A. Массовое число близко к атомной массе изотопа, выраженной в атомных единицах массы, но совпадает с ней только для углерода-12, поскольку атомная единица массы определяется сейчас как 1⁄12 массы атома 12С. Во всех остальных случаях атомная масса не является целым числом, в отличие от массового числа. Так, массовое число изотопа хлора 35Cl равно 35, а его атомная масса составляет 34,96885 а.е.м.

Радионукли́ды, радиоакти́вные нукли́ды — нуклиды, ядра которых нестабильны и испытывают радиоактивный распад. Большинство известных нуклидов радиоактивны. Радиоактивны все нуклиды, имеющие зарядовое число Z, равное 43 (технеций) или 61 (прометий) или большее 82 (свинец); соответствующие элементы называются радиоактивными элементами. Радионуклиды существуют у любого элемента, причём у любого элемента радионуклидов существенно больше, чем стабильных нуклидов.

Радиоакти́вный распа́д — спонтанное изменение состава или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие нуклиды — радиоактивными (радионуклидами). Радиоактивными называют также вещества, содержащие радиоактивные ядра.

О́стров стаби́льности в ядерной физике — гипотетическая трансурановая область на карте изотопов, для которой вследствие предельного заполнения в ядре протонных и нейтронных оболочек, время жизни изотопов значительно превышает время жизни «соседних» трансурановых изотопов, делая возможным долгоживущее и стабильное существование таких элементов, в том числе в природе.
Изоба́ры — нуклиды разных элементов, имеющие одинаковое массовое число; например, изобарами являются 40Ar, 40K, 40Ca. Термин предложен в 1918 году британским химиком Альфредом Уолтером Стюартом.
Нукли́д — вид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения.

Бе́та-распа́д — тип радиоактивного распада, обусловленный слабым взаимодействием и изменяющий заряд ядра на единицу без изменения массового числа. При этом распаде ядро излучает электрон или позитрон (бета-частицу), а также нейтральную частицу с полуцелым спином.
Правило запрета Маттауха — Щукарева — одна из закономерностей ядерной физики, замеченная в 1920-х годах советским химиком С. А. Щукаревым и окончательно сформулированная в 1934 году немецким физиком Йозефом Маттаухом.
Изото́пы плутония — разновидности атомов химического элемента плутония, имеющие разное содержание нейтронов в ядре. На данный момент известны 20 изотопов плутония и ещё 8 возбуждённых изомерных состояний некоторых его нуклидов. Следы плутония-244 были обнаружены в природе.
Изотопы стронция — разновидности химического элемента стронция, имеющие разное количество нейтронов в ядре. Известны изотопы стронция с массовыми числами от 73 до 105 и 6 ядерных изомеров.
Изотопы олова — разновидности атомов химического элемента олова, имеющие разное содержание нейтронов в ядре.
Изото́пы гадоли́ния — разновидности (изотопы) химического элемента гадолиния, отличающиеся количеством нейтронов в ядре. Известны 50 изотопов гадолиния с массовыми числами от 133 до 172 и 16 ядерных изомеров.
Изотопы тантала — разновидности химического элемента тантала, имеющие разное количество нейтронов в ядре. Известны изотопы тантала с массовыми числами от 155 до 190, и более 30 ядерных изомеров.

Алюминий-26, 26Al — радиоактивный изотоп химического элемента алюминия, распадающийся посредством позитронного распада и электронного захвата в стабильный нуклид магний-26. Период полураспада основного состояния 26Al составляет 7,17⋅105 лет. Это слишком мало, чтобы изотоп мог сохраниться с момента предсолнечного нуклеосинтеза до настоящего времени, но небольшое количество ядер этого нуклида постоянно образуется при столкновениях протонов космических лучей с атомами аргона. Существует также метастабильное возбуждённое состояние 26mAl с энергией 228,305 кэВ и периодом полураспада 6,3465 секунды; оно тоже распадается посредством позитронного распада и электронного захвата.

Изото́пы оганесо́на — разновидности атомов (и ядер) химического элемента оганесона, имеющие разное содержание нейтронов в ядре. В природе ни один из его изотопов не обнаружен. Один из изотопов, 294Og, получен в ходе эксперимента, который проводился тремя циклами в феврале-июне 2002, феврале-марте 2005 и мае-июне 2005 года группой физиков под руководством Юрия Оганесяна в ОИЯИ (Дубна, Россия) совместно с физиками из Ливерморской национальной лаборатории. Ядра кальция-48 (в общей сложности 4,1·1019 ионов), разогнанные на ускорителе тяжёлых ионов до энергии около 30 МэВ, попадали на тонкую мишень из калифорния-249. Оганесон-294 образовывался в следующей реакции (её сечение очень мало: 0,5+1,6
−0,3 пикобарн):

Избы́ток ма́ссы Δ(A, Z) нуклида AZ — разность между действительной массой M нуклида и его массовым числом A, умноженным на атомную единицу массы: Δ = M − A × а.е.м. Таким образом, избыток массы является выражением энергии связи ядра по отношению к энергии связи углерода-12, который определяет атомную единицу массы. В таблицах масс атомов обычно указывается избыток массы вместо абсолютного значения массы (последнее легко подсчитать, зная избыток массы: M = A × а.е.м. + Δ). Масса атомного ядра хорошо аппроксимируется (разница менее 0,1% для большинства нуклидов) его массовым числом, что указывает на то, что основная часть массы ядра возникает из массы составляющих его протонов и нейтронов. Если избыток массы отрицательный, то у данного ядра энергия связи больше, чем у 12С, и наоборот. По определению, избыток массы у 12С тождественно равен нулю. Если избыток массы ядра больше, чем у ядра с таким же массовым числом, но отличающимся зарядом, оно может испытывать радиоактивный бета-распад с выделением энергии Q, равной разности избытков масс этих ядер. Если ядро испытывает радиоактивный распад с вылетом нуклонов или других ядер (альфа-распад; спонтанное деление; кластерный распад; нейтронный, двухнейтронный, протонный или двухпротонный распад), энергетический эффект Q такого распада равен разности избытка масс начального ядра и избытков масс всех ядер и/или нуклонов в конечном состоянии. Любой спонтанный распад ядра возможен лишь в случае, если энергетический эффект Q распада положителен; иными словами, должно выполняться неравенство
