Алгоритм Прима — алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа. Алгоритм впервые был открыт в 1930 году чешским математиком Войцехом Ярником, позже переоткрыт Робертом Примом в 1957 году, и, независимо от них, Э. Дейкстрой в 1959 году.
Триангуля́ция Делоне́ — триангуляция для заданного множества точек S на плоскости, при которой для любого треугольника все точки из S за исключением точек, являющихся его вершинами, лежат вне окружности, описанной вокруг треугольника. Обозначается DT(S). Впервые описана в 1934 году советским математиком Борисом Делоне.
Алгори́тм Бору́вки — это алгоритм нахождения минимального остовного дерева в графе.
Минимальное остовное дерево в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Задача Штейнера о минимальном дереве состоит в поиске кратчайшей сети, соединяющей заданный конечный набор точек плоскости. Задача получила своё название в честь Якоба Штейнера (1796—1863).
Базис циклов неориентированного графа — множество простых циклов, которые образуют базис пространства циклов графа. Таким образом, это минимальный набор циклов, который позволяет любой эйлеров подграф представить как симметрическую разность базисных циклов.
В теории графов ориентированный граф может содержать ориентированные циклы, кольцо дуг, имеющих одно направление. В некоторых приложениях такие циклы нежелательны, мы можем исключить их и получить направленный ациклический граф. Один из способов исключения дуг — просто удаление дуг из графа. Разрезающий циклы набор дуг или разрезающий циклы набор рёбер — это множество дуг, которые, при удалении их из графа, образуют DAG. Рассматривая под другим углом, это множество, содержащее по меньшей мере одно ребро из каждого цикла графа.
Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо. Деревья Тремо названы именем Шарля Пьера Тремо, французского автора 19-го века, который использовал вариант поиска в глубину как стратегию выхода из лабиринта. Деревья Тремо также называют нормальными остовными деревьями, особенно в контексте бесконечных графов.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
Евклидово минимальное остовное дерево — это минимальное остовное дерево набора из n точек на плоскости, где вес ребра между любой парой точек является евклидовым расстоянием между двумя точками. Простыми терминами, EMST связывает набор точек с помощью отрезков так, что общая длина всех отрезков минимальна и любая точка может быть достигнута из другой точки по этим отрезкам.
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа. Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём использования некоего специального значения вместо длины пути. Однако во многих случаях возможны более быстрые алгоритмы.
Геометрический остов или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Граф Яо — вид геометрического остова, взвешенный неориентированный граф, соединяющий множество геометрических точек со свойством, что для любой пары точек в графе кратчайший путь между ними имеет длину не превосходящую на постоянный множитель их евклидова расстояния.
Граф относительных окрестностей — это неориентированный граф, определённый на множестве точек на евклидовой плоскости путём соединения двух точек p и q ребром, когда не существует третьей точки r, которая ближе как к p, так и q, чем p и q друг к другу. Этот граф предложил Годфрид Туссен в 1980 как способ определения структуры на множестве точек, которая отражает человеческое восприятие формы множества.
Граф Уркхарта множества точек на плоскости, названный в честь Родерика Б. Уркхарта, получается путём удаления самого длинного ребра из каждого треугольника в триангуляции Делоне.
Минимально критичное остовное дерево во взвешенном неориентированном графе — это остовное дерево, в котором наиболее тяжёлое ребро весит как можно меньше. Критичное ребро — это самое тяжёлое ребро в стягивающем дереве. Стягивающее дерево является минимальным критичным остовным деревом, если граф не содержит стягивающего дерева с критичным ребром меньшего веса. Для ориентированного графа аналогичная задача известна как минимально критичное стягивающее ориентированное дерево.
Сегментация изображений на основе минимального остовного дерева позволяет разбить цифровое изображение на области точек с похожими свойствами, например, по однородности. Представление областей изображения высокого уровня упрощает задачи анализа изображения, такие как подсчёт объектов или обнаружение изменений, поскольку свойства области могут сравниваться легче, чем просто пиксели.