Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.
Кипе́ние — процесс интенсивного парообразования, который происходит в жидкости как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз, то есть на стенках сосудa образуются пузырьки, которые содержат воздух и насыщенный пар. Кипение, как и испарение, является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения. Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ. Процессы кипения широко применяются в различных областях человеческой деятельности. Например, кипячение является одним из распространённых способов физической дезинфекции питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получения кипятка. Также, процесс кипения применяется практически во всех типах холодильных установок, в том числе и в подавляющем большинстве бытовых холодильников и кондиционеров. Охлаждение воздуха в камере холодильника происходит именно благодаря кипению хладагента, причём в испарителе холодильной установки хладагент при пониженном давлении выкипает полностью. Кипение при постоянном давлении - неотъемлемый термодинамический процесс во всех тепловых двигателях, работающих по циклу Ренкина.
Диффу́зия — неравновесный процесс перемещения вещества из области с высокой концентрацией в область с низкой концентрацией, приводящий к самопроизвольному выравниванию концентраций по всему занимаемому объёму. Обычно рассматривают диффузию одного вещества в среде, но возможно и диффузия двух веществ, тогда говорят о взаимной диффузии газов. В плазме ионы и электроны имеют заряд и при взаимном проникновении одного вещества в другое вместо взаимной диффузии используют термин амбиполярная диффузия. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией против направления градиента концентрации.
Колло́идная хи́мия — наука о дисперсных системах и поверхностных явлениях, возникающих на границе раздела фаз. Изучает адгезию, адсорбцию, смачивание, коагуляцию, электро-поверхностные явления в дисперсных системах. Разрабатывает технологии строительных материалов, бурения горных пород, золь-гель-технологии. Играет фундаментальную роль в современной нанотехнологии, медицине, биологии, геологии, технологии производства сырья, продуктов питания и товаров различного назначения.
Эму́льсия — дисперсная система, состоящая из микроскопических капель жидкости, распределенных в другой жидкости.
Адге́зия в физике — сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия, то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики. В рамках термодинамики уравнения состояния считают заданными при определении системы. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.
Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.
Моносло́й — единичный, плотно упакованный слой атомов либо молекул.
Бори́с Влади́мирович Деря́гин — советский и российский физикохимик, профессор (1935), член-корреспондент Академии наук СССР (1946), академик Российской академии наук (1992). Лауреат Государственной премии СССР.
Пе́на — дисперсная система с газовой дисперсной фазой и жидкой или твёрдой дисперсионной средой.
Пове́рхностные явле́ния — совокупность явлений, обусловленных особыми свойствами тонких слоёв вещества на границе соприкосновения фаз. К поверхностным явлениям относятся процессы, происходящие на границе раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряжённых фаз.
Характеристическая функция — функция состояния термодинамической системы, рассматриваемая как математическая функция определённого набора термодинамических параметров — естественных независимых переменных — и характеризующаяся тем, что посредством этой функции, её частных производных по естественным переменным и самих естественных переменных могут быть выражены в явном виде все термодинамические свойства системы. После замены хотя бы одной из естественных переменных на другую независимую переменную функция перестаёт быть характеристической. При фиксированных естественных переменных характер изменения характеристической функции указывает на направление протекания самопроизвольного процесса. Характеристическая функция аддитивна: характеристическая функция всей системы равна сумме характеристических функций её частей. Функция состояния, представляющая собой характеристическую функцию для одних термодинамических систем, может не являться характеристической для других систем. Так, потенциал Гиббса и функция Планка для фотонного газа не являются характеристическими функциями, поскольку тождественно равны нулю.
Теория ДЛФО, также теория агрегативной устойчивости лиофобных дисперсных систем — физическая теория, объясняющая агрегативную устойчивость лиофобных дисперсных систем, разработанная независимо советскими физиками Дерягиным Б.В. и Ландау Л.Д., и позже голландскими физико-химиками Е. Фервеем и Дж. Овербеком. В основе теории лежит положение о сопоставлении межмолекулярных взаимодействий частиц дисперсной фазы в дисперсионной среде, электростатического взаимодействия диффузных ионных слоёв и теплового движения частиц дисперсной фазы. Согласно данной теории коллоидные частицы лиофобной дисперсной системы из-за наличия броуновского движения могут беспрепятственно сближаться друг с другом, пока не соприкоснутся своими жидкими диффузными оболочками или слоями. Для дальнейшего сближения частицы должны деформировать свои диффузные оболочки, чтобы произошло их взаимное перекрывание. Но жидкости плохо сжимаются, и в ответ на деформацию с их стороны появляются так называемые силы «расклинивающего давления», препятствующие осуществлению данного процесса, следствие чего является агрегативная устойчивость коллоидной системы — сохранение исходных размеров частиц и предотвращение их укрупнения (слипания).
Соотношения Максвелла — тождественные соотношения между производными термодинамических величин. Являются следствием математического тождества — равенства смешанных производных термодинамического потенциала.
В технике, физике и химии изучение явлений переноса касается обмена массой, энергией, зарядом, импульсом и угловым моментом в исследуемых системах. Хотя явления переноса опираются на такие разные области, как механика сплошных сред и термодинамика, в них уделяют большое внимание общности между рассматриваемыми темами. Перенос массы, количества движения и тепла имеет очень схожую математическую основу, и параллели между ними используются при изучении явлений переноса для выявления глубоких математических связей, которые часто предоставляют очень полезные инструменты для анализа одной области, которые напрямую выводятся из других.