
Си́льное ядерное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны, соответствующие им античастицы и составленные из них частицы, называемые адронами.

Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый теоретический фундамент физики элементарных частиц.

Кварк — бесструктурная элементарная частица и фундаментальная составляющая материи. Кварки объединяются в составные частицы, называемые адронами, наиболее стабильными из которых являются протоны и нейтроны, компоненты атомных ядер. Всё обычно наблюдаемое вещество состоит из верхних кварков, нижних кварков и электронов. Из-за явления, известного как удержание цвета, кварки никогда не встречаются изолированно; их можно найти только в составе адронов, которые включают барионы и мезоны, или в кварк-глюонной плазме. По этой причине много информации о кварках было получено из наблюдений за адронами.

Адро́ны — класс составных частиц, подверженных сильному взаимодействию. Термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории. Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны.
Хира́льность (киральность) — свойство физики элементарных частиц, состоящее в различии правого и левого, и указывающее на то, что Вселенная является несимметричной относительно замен правого и левого.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Диаграмма Фейнмана — графическое представление математических уравнений, описывающих взаимодействия субатомных частиц в рамках квантовой теории поля. Этот инструмент изобрёл американский физик Ричард Фейнман в конце 1940-х годов, во время его работы в Корнельском университете, для выполнения расчётов рассеяния частиц.

Пио́н, пи-мезо́н — три вида субатомных частиц из группы мезонов. Обозначаются π0, π+ и π−. Имеют наименьшую массу среди мезонов. Открыты в 1947 году. Являются переносчиками ядерных сил между нуклонами в ядре. Заряженные пионы обычно распадаются на мюон и мюонное (анти)нейтрино, нейтральные — на два гамма-кванта.

Мезо́н — адрон, имеющий нулевое значение барионного числа. В Стандартной модели мезоны — составные элементарные частицы, состоящие из равного числа кварков и антикварков. К мезонам относятся пионы, каоны (K-мезоны) и другие, более тяжёлые, мезоны.

Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий, характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного.
Барио́нное число́ — сохраняющееся аддитивное квантовое число в физике элементарных частиц, определяющее количество барионов в системе. Оно определяется как:


Экзотические мезоны — это мезоны, квантовые числа которых невозможны в кварковой модели.

Адронная струя образуется несколькими элементарными частицами, летящими в одном направлении в узком конусе. Физическая причина образования струи — адронизация кварка или глюона с большой энергией. В природе адронные струи образуются только искусственным образом, в экспериментах в физике высоких энергий.

Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения, теорема о равнораспределении — связывает температуру системы с её средней энергией в классической статистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.

Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Фи-мезон — элементарная частица со скрытой странностью и изотопическим спином 0, представляющая собой мезонные резонансы с чётным орбитальным квантовым числом. Она образует синглет, дополняющий октет векторных мезонов, то есть является аналогом η′-мезона.
Mx-магнитометр — наиболее распространённый вид оптического квантового магнитометра, работающего на парах щелочных металлов.

Кварковая модель — в физике элементарных частиц классификационная схема адронов с точки зрения их валентных кварков — кварков и антикварков, порождающих квантовые числа адронов.
Релятивистская квантовая механика (РКМ) — раздел квантовой физики, в котором рассматриваются релятивистские квантовые законы движения микрочастиц в одночастичном приближении. Более обще, это любая ковариантная формулировка квантовой механики (КМ). Эта теория применима к массивным частицам, движущимися со всеми скоростями, вплоть до сравнимых со скоростью света c, и к безмассовым частицам. Теория применяется в физике высоких энергий, физике элементарных частиц и физике ускорителей, а также в атомной физике, квантовой химии и физике конденсированного состояния. Нерелятивистская квантовая механика в математической формулировке квантовой механики, применяется в контексте теории относительности Галилея, в частности, к квантованию уравнений классической механики путём замены динамических переменных операторами. Релятивистская квантовая механика — это квантовая механика, применяемая совместно со специальной теорией относительности (СТО). Хотя более ранние формулировки, такие как представления Шрёдингера и Гейзенберга, изначально были сформулированы в нерелятивистской форме, некоторые из них также учитывают СТО.