
Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Плазми́ды — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот. Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов.

Рекомбинация — перераспределение генетического материала путём разрыва и соединения разных молекул, приводящее к появлению новых комбинаций генов или других нуклеотидных последовательностей. В широком смысле слова включает в себя не только рекомбинацию между молекулами ДНК, но и перекомбинацию (сортировку) генетического материала на уровне целых хромосом или ядер, а также обмен плазмидами между клетками.
F-плазми́да, или F-фактор — это конъюгативная эписома клеток Escherichia coli K-12, то есть клеточный элемент, необходимый для одного из типов полового процесса бактерий — конъюгации.
Конъюга́ция — однонаправленный перенос части генетического материала при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Джошуа Ледербергом и Эдвардом Татумом. Явление конъюгации было открыто и хорошо изучено у кишечной палочки, но в дальнейшем конъюгация была описана у множества как грамположительных, так и грамотрицательных бактерий. Посредством конъюгации бактерии обмениваются генетическим материалом, поддерживая своё генетическое разнообразие.

Топоизомера́зы — класс ферментов-изомераз, которые влияют на топологию ДНК. Топоизомеразы способны релаксировать сверхспирализованные молекулы ДНК путём внесения одно- или двуцепочечных разрывов с последующим восстановлением (лигированием). Вместе с тем в некоторых случаях топоизомеразы могут вносить в ДНК отрицательные супервитки или катенаны.

Антисмысловы́е РНК — одноцепочечные РНК, которые комплементарны мРНК, транскрибируемой в клетке, или гену-мишени. Механизмы действия антисмысловых РНК весьма разнообразны, они могут как подавлять, так и активировать экспрессию гена-мишени. Природные антисмысловые РНК есть и у прокариот, и у эукариот; они относятся к длинным некодирующим РНК как РНК длиной более 200 нуклеотидов. Синтетические антисмысловые РНК нашли широкое применение у исследователей в качестве инструмента для нокдауна генов. Антисмысловые РНК также находят медицинское применение.

Автоно́мно реплици́рующаяся после́довательность — последовательность ДНК генома дрожжей, содержащая точку начала репликации (ori) и отвечающая за инициацию репликации.
Точка начала репликации — это фрагмент молекулы нуклеиновой кислоты, с которого начинается её репликация. Структура точки начала репликации отличается у разных видов, но у всех организмов это АТ-богатая и потому легкоплавкая последовательность. Точка начала репликации и прилегающие к ней фрагменты нуклеиновой кислоты, не отделённые сайтами терминации, составляют единицу репликации — репликон. Репликация ДНК может начинаться от точки начала репликации в одном или двух направлениях.
Гены «домашнего хозяйства» — это гены, необходимые для поддержания важнейших жизненных функций организма, которые экспрессируются практически во всех тканях и клетках на относительно постоянном уровне. Гены домашнего хозяйства функционируют повсеместно, на всех стадиях жизненного цикла организма.

V(D)J-рекомбина́ция, или V(D)J-реаранжиро́вка , — механизм соматической рекомбинации ДНК, происходящий на ранних этапах дифференцировки лимфоцитов и приводящий к формированию антиген-распознающих участков антител и Т-клеточного рецептора. Гены иммуноглобулинов и Т-клеточных рецепторов состоят из повторяющихся сегментов, принадлежащих к трём классам: V, D и J. В процессе V(D)J-перестройки генные сегменты, по одному из каждого класса, соединяются вместе. Объединённая последовательность сегментов V(D)J кодирует вариабельные домены каждой из цепей рецептора или антитела.

Тип спа́ривания, или полово́й тип, — понятие, применяемое по отношению к микроорганизмам, у которых есть половой процесс, но к которым классическое понятие биологического пола неприменимо, так как у них отсутствуют яйцеклетки и сперматозоиды как таковые. Вместо этого у них может происходить передача генетической информации между клетками при их непосредственном контакте, но не сопровождающаяся слиянием клеток (конъюгация) или слияние одинаковых (изогамия) или одинаковых по строению, но различных только по размеру (анизогамия) гамет. Вступать во взаимодействие могут только клетки различных половых типов.

Репликация по типу катящегося кольца — процесс однонаправленной репликации нуклеиновой кислоты, в ходе которого быстро синтезируются множественные копии кольцевых молекул ДНК или РНК, например, плазмид, геномов бактериофагов и кольцевых РНК вироидов. Некоторые вирусы эукариот также подвергают свой геном репликации по такому механизму.

Гомологи́чная рекомбина́ция, или о́бщая рекомбина́ция, — тип генетической рекомбинации, во время которой происходит обмен нуклеотидными последовательностями между двумя похожими или идентичными хромосомами. Это наиболее широко используемый клетками способ устранения двух- или однонитевых повреждений ДНК. Гомологичная рекомбинация также создаёт разнообразие комбинаций генов во время мейоза, обеспечивающих высокий уровень наследственной изменчивости, что, в свою очередь, позволяет популяции лучше адаптироваться в ходе эволюции. Различные штаммы и виды бактерий и вирусов используют гомологичную рекомбинацию в процессе горизонтального переноса генов.
Фазмиды — молекулярные векторы, являющиеся искусственными гибридами между фагом и плазмидой. Фазмиды после встройки чужеродной ДНК могут в одних условиях развиваться как фаги, а в других как плазмиды.

Ti-плазми́да — плазмида почвенной бактерии Agrobacterium tumefaciens, с помощью которой она вызывает опухоли у растений. Участок Ti-плазмиды, известный как T-ДНК, может встраиваться в геном растений и содержит гены биосинтеза фитогормонов и опинов, которые запускают образование опухоли.

Сайт-направленный мутагенез является методом молекулярной биологии, который используется, чтобы создать конкретные и преднамеренные изменения в последовательности ДНК, гена и продуктов генов. Используется для исследования структуры и биологической активности ДНК, РНК и белков, а также для белковой инженерии.
Фаг P1 — умеренный бактериофаг, поражающий кишечную палочку и некоторые другие бактерии. При прохождении лизогенного цикла геном фага существует в виде плазмиды в бактерии, в отличие от других фагов, которые интегрируются в ДНК хозяина. P1 имеет икосаэдрическую головку, содержащую ДНК, прикреплённую к сократительному хвосту с шестью хвостовыми волокнами. Фаг P1 привлёк интерес исследователей, потому что его можно использовать для переноса ДНК из одной бактериальной клетки в другую в процессе, известном как трансдукция. При репликации во время своего литического цикла он захватывает фрагменты хромосомы хозяина. Если полученные вирусные частицы используются для заражения другого хозяина, захваченные фрагменты ДНК могут быть интегрированы в геном нового хозяина. Этот метод генной инженерии in vivo широко использовался в течение многих лет и используется до сих пор, хотя и в меньшей степени. P1 также можно использовать для создания производного от P1 вектора клонирования искусственной хромосомы, который может нести относительно большие фрагменты ДНК. P1 кодирует сайт-специфическую рекомбиназу Cre, которая широко используется для проведения клеточно-специфичной или специфичной по времени рекомбинации ДНК путем фланкирования ДНК-мишени сайтами loxP.
Фосмиды — это разновидность плазмид. Фосмиды, в отличие от космид, основаны на бактериальной F-плазмиде. Вектор клонирования ограничен, так как хозяин может содержать только одну молекулу фосмид. Фосмиды могут содержать вставки ДНК размером до 40 т.п.н.; часто источником вставки является случайная геномная ДНК. Фосмидную библиотеку готовят путем выделения геномной ДНК из организма-мишени и её клонирования в фосмидный вектор. Смесь для лигирования затем упаковывается в фаговые частицы, и ДНК трансфицируется в бактериального хозяина. Бактериальные клоны размножают библиотеку фосмида. Низкое число копий обеспечивает более высокую стабильность, чем векторы с относительно большим числом копий, включая космиды. Фосмиды могут быть полезны для создания стабильных библиотек из сложных геномов. Фосмиды обладают высокой структурной стабильностью, и было обнаружено, что они эффективно поддерживают ДНК человека даже после 100 поколений роста бактерий. Фосмидные клоны использовались для оценки точности общедоступной последовательности генома человека.