Меха́ника — раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними; при этом движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.
Класси́ческая меха́ника — вид механики, основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «нью́тоновой меха́никой».

Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.

Теорети́ческая фи́зика — раздел физики, в котором в качестве основного способа познания природы используется создание теоретических моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является самостоятельным методом изучения природы, хотя её содержание, естественно, формируется с учётом результатов экспериментов и наблюдений за природой.

Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введён в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности в специальной теории относительности. Иногда используется как эквивалент понятия «релятивистская физика».
Парадокс Эйнште́йна — Подо́льского — Ро́зена — парадокс, предложенный для указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, без непосредственного воздействия на этот объект. Целью такого косвенного измерения является попытка извлечь больше информации о состоянии микрообъекта, чем даёт квантовомеханическое описание его состояния.

Волнова́я фу́нкция, или пси-фу́нкция
— комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
Копенга́генская интерпрета́ция — интерпретация (толкование) квантовой механики, которую сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене около 1927 года. Бор и Гейзенберг усовершенствовали вероятностную интерпретацию волновой функции, данную Максом Борном, и попытались ответить на ряд вопросов, возникающих вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.
Интерпрета́ция ква́нтовой меха́ники — система философских воззрений на сущность квантовой механики как физической теории, описывающей материальный мир. Известно несколько интерпретаций, по-разному решающих такие философские проблемы, как вопрос о природе физической реальности и способе её познания, о характере детерминизма и причинности, о сущности и месте статистики в квантовой механике. Квантовая механика считается «наиболее проверенной и наиболее успешной теорией в истории науки», но консенсуса в понимании «её глубинного смысла» всё ещё нет.
Кот Шрёдингера — мысленный эксперимент, предложенный одним из создателей квантовой механики Эрвином Шрёдингером в 1935 году при обсуждении физического смысла волновой функции. В ходе эксперимента возникает суперпозиция живого и мёртвого кота, что выглядит абсурдно с точки зрения здравого смысла.
Многомирова́я интерпрета́ция или интерпретация Эверетта — интерпретация квантовой механики, которая предполагает существование, в некотором смысле, «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. Исходная формулировка принадлежит Хью Эверетту.
Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики.

Хью Эверетт III — американский физик, предложивший многомировую интерпретацию квантовой механики.
Принцип дополнительности — один из важнейших методологических и эвристических принципов науки, а также один из важнейших принципов квантовой механики, сформулированный в 1927 году Нильсом Бором. Согласно этому принципу, для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих («дополнительных») набора классических понятий, совокупность которых даёт исчерпывающую информацию об этих явлениях как о целостных. Например, дополнительными в квантовой механике являются пространственно-временная и энергетически-импульсная картины. Описания любого физического объекта как частицы и как волны дополняют друг друга, одно без другого лишено смысла, корпускулярный и волновой аспекты описания обязательно должны входить в описание физической реальности. При получении информации об одних физических величинах, описывающих микрообъект, неизбежно теряется информация о других физических величинах, дополнительных к первым.
Теории скрытых параметров — в квантовой механике теории, предложенные для решения проблемы квантовомеханического измерения путём ввода гипотетических внутренних параметров, присущих измеряемым системам. Значения таких параметров не могут быть измерены экспериментально, но определяют результат измерения других параметров системы, описываемых в квантовой механике волновыми функциями и/или векторами состояния.
Открытая система в физике — физическая система, которую нельзя считать закрытой по отношению к окружающей среде в каком-либо аспекте — информационном, вещественном, энергетическом и т. д. Открытые системы могут обмениваться веществом, энергией, информацией с окружающей средой.

Дискуссия Бора и Эйнштейна — серия публичных споров о квантовой механике между Альбертом Эйнштейном и Нильсом Бором, являющаяся важным этапом развития философии науки. Итоги дискуссии были подведены Бором в обзорной статье под названием «Дискуссии с Эйнштейном о проблемах теории познания в атомной физике». Несмотря на их различия во мнениях относительно квантовой механики, Бор и Эйнштейн до конца своих дней испытывали взаимное восхищение.
Проблема измерения в квантовой механике — проблема определения когда происходит коллапс волновой функции. Неспособность наблюдать такой коллапс напрямую породила разные интерпретации квантовой механики и сформулировала ключевой набор вопросов, на которые должна дать ответы каждая интерпретация.
Интерпретация Пенроуза - предположение Роджера Пенроуза о взаимосвязи между квантовой механикой и общей теорией относительности. Пенроуз предположил, что квантовое состояние находится в суперпозиции до тех пор, пока кривизна пространства-времени не достигнет значительного уровня.
«Друг Вигнера» — мысленный эксперимент в области теоретической квантовой физики, опубликованный физиком Юджином Вигнером в 1961 году и получивший дальнейшее развитие Дэвидом Дойчем в 1985 году. Сценарий предполагает косвенное наблюдение за квантовым измерением: наблюдатель
наблюдает за другим наблюдателем,
, который выполняет квантовое измерение в физической системе. Затем два наблюдателя формулируют утверждение о состоянии физической системы после измерения в соответствии с законами квантовой теории. Однако в «ортодоксальной» копенгагенской интерпретации фиксирующие заявления двух наблюдателей противоречат друг другу. Это отражает кажущуюся несовместимость двух законов в копенгагенской интерпретации: детерминированной и непрерывной эволюции состояния замкнутой системы во времени и недетерминированного, прерывистого коллапса состояния системы при измерении. Таким образом, друг Вигнера напрямую связан с проблемой измерения в квантовой механике с её знаменитым парадоксом кота Шредингера.