Рентгенострукту́рный ана́лиз — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трёхмерной кристаллической решётке.

Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до нескольких МэВ), что соответствует длинам волн от ~103 до ~10−2 Å (от ~102 до ~10−3 нм).

Спектро́метр — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов. Анализируемый спектр получается путём регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением. Обычно измеряемыми величинами являются интенсивность и энергия излучения, но могут регистрироваться и другие характеристики, например, поляризационное состояние. Термин «спектрометр» применяется к приборам, работающим в широком диапазоне длин волн: от гамма до инфракрасного диапазона.

Счётчик Ге́йгера, счётчик Ге́йгера — Мю́ллера — газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц.
Нейтроногра́фия — дифракционный метод изучения атомной и/или магнитной структуры кристаллов, аморфных материалов и жидкостей с помощью рассеивания нейтронов.

Порошко́вая рентге́новская дифра́кция — метод исследования структурных характеристик материала при помощи дифракции рентгеновских лучей на порошке или поликристаллическом образце исследуемого материала. Также называется методом порошка. Результатом исследования является зависимость интенсивности рассеянного излучения от угла рассеяния. Соответствующий прибор называют порошковым дифрактометром. Преимуществом метода является то, что дебаеграмма для каждого вещества уникальна и позволяет определить вещество даже тогда, когда его структура не известна.

Рентге́нофлуоресце́нтный ана́лиз (РФА) — один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут быть обнаружены различные элементы от бериллия (Be) до урана (U). Метод РФА основан на сборе и последующем анализе спектра, возникающего при облучении исследуемого материала рентгеновским излучением. При взаимодействии с высокоэнергетичными фотонами атомы вещества переходят в возбуждённое состояние, что проявляется в виде перехода электронов с нижних орбиталей на более высокие энергетические уровни вплоть до ионизации атома. В возбуждённом состоянии атом пребывает крайне малое время, порядка одной микросекунды, после чего возвращается в спокойное положение. При этом электроны с внешних оболочек заполняют образовавшиеся вакантные места, а излишек энергии либо испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек (оже-электрон)[уточнить]. При этом каждый атом испускает фотон с энергией строго определённого значения, например железо при облучении рентгеновскими лучами испускает фотоны Кα = 6,4 кэВ. Далее соответственно по энергии и количеству квантов судят о строении вещества.

Волнодисперсионный рентгенофлуоресцентный спектрометр представляет собой прибор, позволяющий проводить полный элементный анализ, использующий для подсчёта и анализа рентгенофлуоресценцию какой-либо конкретной длины волны, дифрагированной на кристалле. Длина волны рентгеновского луча и шаг кристаллической решётки связаны законом Брэгга. В отличие от метода энергодисперсионной рентгенофлуоресценции, волнодисперсионный подсчитывает фотоны от одной длины волны, не анализируя широкий спектр длин волн или энергий. Это означает, что элемент должен быть известен, чтобы найти кристалл, способный его правильно дифрагировать. Этот метод часто используется в сочетании с энергодисперсионным, где химический состав неизвестного элемента можно извлечь из общего спектра. WDS используется главным образом в химическом анализе.
Детектор частиц, детектор элементарных частиц, детектор ионизирующего излучения в экспериментальной физике элементарных частиц — устройство, предназначенное для обнаружения и измерения параметров атомных и субатомных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях.
Рентгенорадиометрический метод в геофизике (РРМ) — ядерно-геофизический метод исследования элементного состава вещества горных пород и руд, при котором исследуемый объект облучают потоком квантов электромагнитного ионизирующего излучения, испускаемым радиоизотопным источником или рентгеновской трубкой, и судят о содержании анализируемых химических элементов в нём по интенсивности характеристического флуоресцентного рентгеновского излучения, возбуждаемого в веществе. Вторичное характеристическое излучение при этом регистрируется с помощью спектрометрических детекторов ионизирующего излучения и амплитудных анализаторов импульсов.

Обсерватория HEAO-2 или обсерватория имени Эйнштейна — первая в мире орбитальная обсерватория с зеркалами, имеющими возможность фокусировать рентгеновские лучи. Принцип работы зеркал обсерватории основан на скользящем отражении рентгеновских фотонов, падающих на апертуру телескопа. До запуска обсерватория называлась HEAO-B, после успешного начала работы обсерватория была переименована в обсерваторию имени Эйнштейна.

Tenma (яп. てんま Тэмма) — второй японский космический спутник с рентгеновской обсерваторией на борту. Обсерватория разработана и сделана в Институте космических наук и астронавтики (ISAS) проектной группой под руководством Минору Ода. До запуска обсерватории 20 февраля 1983 года рабочее название — Astro-B. Название спутника означает «пегас». Спутник обсерватории вращался вокруг оси, вдоль которой были направлены оптические оси основных инструментов. Основной задачей, стоящей перед обсерваторией было получение спектров источников в нашей Галактике и за её пределами с рекордным на то время спектральным разрешением в диапазоне энергий выше 2—30 кэВ, что стало возможным благодаря наличию на борту сцинтилляционных спектрометров, имеющих в два раза лучшее спектральное разрешение по сравнению с более типичными рентгеновскими детекторами того времени — пропорциональными счётчиками. После отказа аккумуляторных батарей обсерватории в июле 1984 года эффективность наблюдений катастрофически упала — наблюдения стало возможным проводить лишь на светлой стороне Земли. Тем не менее наблюдения время от времени продолжались до 11 ноября 1985 года. Спутник вошёл в плотные слои атмосферы и разрушился 19 января 1989 года.

Ariel 5 — орбитальная рентгеновская обсерватория, совместный проект Британского и Американского космических агентств. Предпоследний спутник серии Ariel. Запущена с морской платформы Сан-Марко в Индийском океане.

SAS-3 — третий спутник в серии малых астрономических спутников НАСА, запущенный с Итальянско-кенийской платформы Сан-Марко в Индийском океане 5 мая 1975 года. Обсерватория несла 4 инструмента для исследования неба рентгеновском диапазоне. Спутник, сделанный в Университете им. Джонса Хопкинса и Лаборатории прикладной физики, был предложен в Массачусетском технологическом институте. Оттуда же велось его управление в течение всего периода работы.
Метод совпадений и антисовпадений — позволяет регистрировать частицы с заданной между ними корреляцией в пространстве и времени.
Метод дисперсионной рентгеновской спектроскопии по длине волны (ДРСДВ) — аналитическая методика элементного анализа твёрдого вещества, базирующаяся на анализе максимумов по их расположению и интенсивности её рентгеновского спектра, вариант рентгеноспектрального анализа. С помощью ДРСДВ-методики можно количественно и качественно определить элементы в исследуемом материале начиная с атомного номера 4 — (Бериллий). Нижняя граница определения наличия элемента при этом составляет 0.01 весового процента, что в абсолютных числах составляет 10−14 до 10−15 грамма.

Дифрактометр — измерительный прибор для измерения интенсивности и направления излучения, дифрагированного на кристаллическом объекте.
Малоугловое рентгеновское рассеяние сокр., МРР (англ. small angle X-ray scattering сокр., SAXS) — упругое рассеяние рентгеновского излучения на неоднородностях вещества, размеры которых существенно превышают длину волны излучения, которая составляет λ = 0,1–1 нм; направления рассеянных лучей при этом лишь незначительно отклоняются от направления падающего луча.
Детектор рентгеновского излучения — приборы, используемые для измерения потока, пространственного распределения, спектра и других свойств рентгеновского излучения. Используются, в частности, в томографах.
Цифровая рентгенография — цифровой метод исследования структуры объектов за счёт облучения объекта рентгеновскими или гамма-лучами и получения проекционного изображения на чувствительных к лучам пластины, которую можно использовать многократно. Отличительной особенностью цифровой радиографией является применение цифровых методов обработки изображений и детекторов с помощью которых формируется изображение структуры объекта за счет его облучения, что увеличивает скорость исследований и диагностики.