
Оптимизация — задача нахождения экстремума целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств или неравенств.
Градиентный спуск, метод градиентного спуска — численный метод нахождения локального минимума или максимума функции с помощью движения вдоль градиента, один из основных численных методов современной оптимизации.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.

Метод роя частиц (МРЧ) — метод численной оптимизации, для использования которого не требуется знать точного градиента оптимизируемой функции.
Последовательное квадратичное программирование — один из наиболее распространённых и эффективных оптимизационных алгоритмов общего назначения, основной идеей которого является последовательное решение задач квадратичного программирования, аппроксимирующих данную задачу оптимизации. Для оптимизационных задач без ограничений алгоритм SQP преобразуется в метод Ньютона поиска точки, в которой градиент целевой функции обращается в ноль. Для решения исходной задачи с ограничениями-равенствами метод SQP преобразуется в специальную реализацию ньютоновских методов решения системы Лагранжа.
Многокритериальная оптимизация, или программирование — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Алгоритм пчелиной колонии — один из полиномиальных эвристических алгоритмов для решения оптимизационных задач в области информатики и исследования операций. Относится к категории стохастических бионических алгоритмов, основан на имитации поведения колонии медоносных пчел при сборе нектара в природе. Предложен Д. Карабога в 2005 г.
Филинг-радиус — метрическая характеристика Риманова многообразия.
Задача о предписанной скалярной кривизне заключается в построении римановой метрики с заданной скалярной кривизной. Эта задача в основном решена в статье Каждана и Уорнера.
Кэлерово многообразие — многообразие с тремя взаимно совместимыми структурами: комплексной структурой, римановой метрикой и симплектической формой.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи. Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности равен нулю при выполнении условий регулярности ограничений.
Выпуклое программирование — это подобласть математической оптимизации, которая изучает задачу минимизации выпуклых функций на выпуклых множествах. В то время как многие классы задач выпуклого программирования допускают алгоритмы полиномиального времени, математическая оптимизация в общем случае NP-трудна.
Субградиентные методы — итеративные методы решения задач выпуклой минимизации. Субградиентные методы, разработанные Наумом Зуселевичем Шором сходятся, даже если применяются к недифференцируемым целевым функциям. Когда функция дифференцируема, субградиентные методы для задач без ограничений используют то же направление поиска, что и метод наискорейшего спуска.

Выпуклый анализ — это ветвь математики, посвящённая изучению свойств выпуклых функций и выпуклых множеств, часто имеющая приложения в выпуклом программировании, подобласти теории оптимизации.

Клод Лебрю́н — североамериканский геометр, специалист в комплексной и дифференциальной геометрии, в первую очередь четырёхмерных многообразий, а также теории относительности. Профессор Университета штата Нью-Йорк в Стони-Бруке.
Оптимизация с ограничениями — это процесс оптимизации целевой функции с учётом некоторых ограничений с некоторыми переменными. Целевая функция является функцией потерь, энергетической функцией, которая минимизируется, функцией вознаграждения, или функцией полезности, которая максимизируется.