
Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Ген — в классической генетике — наследственный фактор, который несёт информацию об определённом признаке или функции организма, и который является структурной и функциональной единицей наследственности. В таком качестве термин «ген» был введён в 1909 году датским ботаником, физиологом растений и генетиком Вильгельмом Йоханнсеном.
Гено́м — совокупность наследственного материала, заключённого в клетке организма. Геном содержит биологическую информацию, необходимую для построения и поддержания организма. Большинство геномов, в том числе геном человека и геномы всех остальных клеточных форм жизни, построено из ДНК, однако некоторые вирусы имеют геномы из РНК.

Транспозоны — участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.
Эндонуклеазы рестрикции, рестриктазы — группа ферментов, относящихся к классу гидролаз, катализирующих реакцию гидролиза нуклеиновых кислот.

Фаг λ, фаг лямбда — умеренный бактериофаг, который заражает кишечную палочку.

Инве́рсия — хромосомная перестройка, при которой происходит поворот участка хромосомы на 180°. Инверсии являются сбалансированными внутрихромосомными перестройками. Различают парацентрические и перицентрические инверсии. Инверсии играют роль в эволюционном процессе, видообразовании и в нарушениях фертильности.

Геном человека — совокупность наследственного материала, заключённого в клетке человека. Согласно этому определению человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также множества копий митохондриальной ДНК. Существует и другое определение генома, в котором под геномом подразумевают совокупность генетического материала гаплоидного набора хромосом. Когда говорят о размере генома человека, то имеют в виду данный вариант определения генома. Так, двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе 3 099 734 149 пар оснований.
Трансформа́ция — процесс поглощения бактериальной клеткой молекулы ДНК из внешней среды. Для того, чтобы быть способной к трансформации, клетка должна быть компетентной, то есть молекулы ДНК должны иметь возможность проникнуть в неё через клеточные покровы. Трансформация активно используется в молекулярной биологии и генетической инженерии.
Некодирующая ДНК или Мусорная ДНК — части геномной ДНК организмов, которые не кодируют последовательности белков. Некоторые некодирующие ДНК переводятся в функциональные некодирующие РНК-молекулы. Другие функции некодирующей ДНК включают регуляцию последовательностей кодирующих белки, центромер и теломер. Термин «мусорная ДНК» стал популярным в 1960-х. В соответствии с T. Ryan Gregory, геномным биологом, первое явное обсуждение природы «мусорной» ДНК было сделано David Comings в 1972 году и он применил этот термин ко всем некодирующим ДНК. Термин был формализован Сусуму Оно в 1972 году, который заметил, что генетический груз нейтральных мутаций находится на верхнем пределе значений для функционирующих локусов, которые могли быть ожидаемыми исходя из типичной частоты мутаций. Сусуму предсказал, что геномы млекопитающих не могут содержать более чем 30 000 локусов из-за давления естественного отбора, так как «стоимость» мутационной нагрузки вызвала бы неизбежное снижение приспособленности, и в конечном счете вымирание. Этот прогноз остается верным, геном человека содержит приблизительно 20 000 генов. Другим подтверждением теории Оно служит наблюдение, что даже близкородственные виды могут иметь очень разные по размеру геномы, которое окрестили C-парадокс в 1971 году.
CRISPR — особые локусы бактерий и архей, состоящие из прямых повторяющихся последовательностей, которые разделены уникальными последовательностями (спейсерами). Спейсеры заимствуются из чужеродных генетических элементов, с которыми сталкивалась клетка. РНК, транскрибирующиеся с локусов CRISPR, совместно с ассоциированными белками Cas обеспечивают адаптивный иммунитет за счёт комплементарного связывания РНК с нуклеиновыми кислотами чужеродных элементов и последующего разрушения их белками Cas. Впрочем, к настоящему моменту имеется немало свидетельств участия CRISPR в процессах, не связанных с иммунитетом.
Молекулярная эволюция — наука, изучающая процесс изменения последовательностей мономеров в биополимерных молекулах в живых организмах, а именно ДНК, РНК и белков. Молекулярная эволюция опирается на принципы эволюционной биологии, молекулярной биологии и популяционной генетики. Задача молекулярной эволюции состоит в объяснении закономерностей таких изменений. Молекулярная эволюция занимается механизмами накопления изменений молекулами, и механизмами закрепления этих изменений в популяциях, а также проблемами видообразования.
Персональная геномика является разделом геномики, связанным с секвенированием и анализом генома человека. Стадия генотипирования использует различные методы, включая однонуклеотидно полиморфные (МНП) анализирующие чипы, а также частичное или полное секвенирование генома. После расшифровки генотипа его можно проанализировать при помощи опубликованной литературы для определения вероятности риска заболеваний.

Helicos Biosciences — это компания, которая предоставила революционно новую технологию секвенирования единичных молекул, названную true Single Molecule Sequencing (tSMS).

Брэйнбоу – это метод нейровизуализации, в основе которого лежит использование флуоресцентных белков. Будучи внедрённым в геном животного, зелёный флуоресцентный белок и его генетически модифицированные варианты окрашивают нервные клетки в разные цвета, что позволяет значительно более точно локализовать архитектуру нейронных связей отдельных клеток. Данный метод позволяет картографировать одновременно до 100 нервных клеток.
Синтения — по изначальному определению, расположение каких-либо локусов на одной и той же хромосоме. Сегодня, однако, синтенией обычно называют ситуацию, когда расположение каких-либо локусов на одной и той же хромосоме наблюдается в разных наборах хромосом. Это явление также называют общей синтенией. Если при этом совпадает и порядок этих локусов в хромосоме, это называется коллинеарностью.
Искусственная бактериальная хромосома — векторная система на основе F-плазмиды E. coli, участков cos фага лямбда и loxP фага Р1, используемая для клонирования длинных последовательностей ДНК. F-плазмида кодирует гены, регулирующие репликацию и контролирующие копийность. По участку loxP плазмидная ДНК может быть расщеплена белком Cre фага Р1, по cos-участку — соответствующим ферментом фага лямбда. Схожая векторная система под названием PAC была сделана на основе бактериальной P1-плазмиды из ДНК фага P1.

Гомологи́чная рекомбина́ция, или о́бщая рекомбина́ция, — тип генетической рекомбинации, во время которой происходит обмен нуклеотидными последовательностями между двумя похожими или идентичными хромосомами. Это наиболее широко используемый клетками способ устранения двух- или однонитевых повреждений ДНК. Гомологичная рекомбинация также создаёт разнообразие комбинаций генов во время мейоза, обеспечивающих высокий уровень наследственной изменчивости, что, в свою очередь, позволяет популяции лучше адаптироваться в ходе эволюции. Различные штаммы и виды бактерий и вирусов используют гомологичную рекомбинацию в процессе горизонтального переноса генов.
Редактирование генома является одним из видов генной инженерии, в котором может быть проведено включение, удаление или перемещение фрагментов ДНК в геноме организма, с использованием специфически спроектированных эндонуклеаз, или «молекулярных ножниц». Эти нуклеазы создают сайт-специфичные двухцепочечные разрывы в ДНК в определённом участке генома. Индуцированные двухцепочечные разрывы репарируются в процессе рекомбинации, что позволяет получать направленные мутации.
Фаг P1 — умеренный бактериофаг, поражающий кишечную палочку и некоторые другие бактерии. При прохождении лизогенного цикла геном фага существует в виде плазмиды в бактерии, в отличие от других фагов, которые интегрируются в ДНК хозяина. P1 имеет икосаэдрическую головку, содержащую ДНК, прикреплённую к сократительному хвосту с шестью хвостовыми волокнами. Фаг P1 привлёк интерес исследователей, потому что его можно использовать для переноса ДНК из одной бактериальной клетки в другую в процессе, известном как трансдукция. При репликации во время своего литического цикла он захватывает фрагменты хромосомы хозяина. Если полученные вирусные частицы используются для заражения другого хозяина, захваченные фрагменты ДНК могут быть интегрированы в геном нового хозяина. Этот метод генной инженерии in vivo широко использовался в течение многих лет и используется до сих пор, хотя и в меньшей степени. P1 также можно использовать для создания производного от P1 вектора клонирования искусственной хромосомы, который может нести относительно большие фрагменты ДНК. P1 кодирует сайт-специфическую рекомбиназу Cre, которая широко используется для проведения клеточно-специфичной или специфичной по времени рекомбинации ДНК путем фланкирования ДНК-мишени сайтами loxP.