
Ква́нтовая (волнова́я) меха́ника — фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Она лежит в основании всей квантовой физики, включая квантовую химию, квантовую теорию поля, квантовую технологию и квантовую информатику.
Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.

Ква́нтовая то́чка — фрагмент проводника или полупроводника, носители заряда которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Когда их освещают УФ-светом, электрон в квантовой точке может быть возбуждён до состояния с более высокой энергией. В случае полупроводниковой квантовой точки этот процесс соответствует переходу электрона из валентной зоны в зону проводимости. Возбуждённый электрон может вернуться в валентную зону, высвободив свою энергию в виде фотона. Это излучение света (фотолюминесценция) показано на рисунке справа. Цвет этого света зависит от разницы энергий между зоной проводимости и валентной зоной или от перехода между дискретными энергетическими состояниями, когда зонная структура в КТ нечётко определена.
Постоя́нная то́нкой структу́ры, обычно обозначаемая как
, является фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она была введена в 1916 году немецким физиком Арнольдом Зоммерфельдом в качестве меры релятивистских поправок при описании атомных спектральных линий в рамках модели атома Бора, то есть характеризует так называемую тонкую структуру спектральных линий. Поэтому иногда она также называется постоянной Зоммерфельда.
Лэ́мбовский сдвиг — различие между энергиями стационарных состояний
и
атома водорода и водородоподобных ионов, обусловленное взаимодействием атома с нулевыми флуктуациями электромагнитного поля. Экспериментальное изучение смещения уровней атома водорода и водородоподобных ионов представляет фундаментальный интерес для проверки теоретических основ квантовой электродинамики.

Графе́н — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом. Атомы углерода находятся в sp2-гибридизации и соединены посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость слоистого графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механической жёсткостью и рекордно большой теплопроводностью. Высокая подвижность носителей заряда, которая оказывается максимальной среди всех известных материалов, делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники и возможную замену кремния в интегральных микросхемах.
Ква́нтовый разме́рный эффе́кт — размерный эффект, изменение термодинамических и кинетических свойств кристалла, когда хотя бы один из его геометрических размеров становится соизмеримым с длиной волны де Бройля электронов. Этот эффект связан с квантованием энергии носителей заряда, движение которых ограничено в одном, двух или трёх направлениях.

Тонкая структура — явление в атомной физике, описывающее расщепление спектральных линий атома.
Рожде́ние пар — в физике элементарных частиц обратный аннигиляции процесс, в котором возникают пары частица-античастица. Для появления реальной пары частиц закон сохранения энергии требует, чтобы энергия, затраченная в этом процессе, превышала удвоенную массу частицы:
Минимальная энергия
необходимая для рождения пары данного типа, называется порогом рождения пар. Кроме того, для рождения реальной пары необходимо выполнение других законов сохранения, применимых к данному процессу. Так, законом сохранения импульса запрещено рождение одним фотоном в вакууме реальной электрон-позитронной пары, поскольку единичный фотон в любой системе отсчёта несёт конечный импульс, а электрон-позитронная пара в своей системе центра масс обладает нулевым импульсом. Чтобы происходило рождение пар, необходимо, чтобы фотон находился в поле ядра или массивной заряженной частицы. Этот процесс происходит в области, имеющей размер комптоновской длины волны электрона λ = 2,4⋅10−10 см.

Тормозно́е излуче́ние — электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях, и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение». Интересно, что немецкое слово Bremsstrahlung прочно закрепилось в английском языке.
Сла́бая локализа́ция — совокупность явлений, обусловленных эффектом квантово-механической интерференции электронов самих с собой в слабо разупорядоченных материалах с металлическим типом проводимости. Явления слабой локализации являются универсальными и проявляются в любых неупорядоченных проводниках — в металлическом стекле, тонких металлических плёнках, системах с двумерным электронным газом и других мезоскопических системах.
Метод Хартри — Фока — в квантовой механике приближённый метод решения уравнения Шрёдингера путём сведения многочастичной задачи к одночастичной в предположении, что каждая частица двигается в некотором усреднённом самосогласованном поле, создаваемом всеми остальными частицами системы. Решение уравнения Шрёдингера позволяет получить целый ряд сведений о свойствах системы, в том числе и её электронную структуру.

Бо́ровская моде́ль а́тома — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Эрнестом Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать энергию непрерывно и очень быстро и, потеряв её, упасть на ядро. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают энергию, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка:
.
NV-центр или азото-замещённая вакансия в алмазе — это один из многочисленных точечных дефектов алмаза: нарушение строения кристаллической решётки алмаза, возникающее при удалении атома углерода из узла решётки и связывании образовавшейся вакансии с атомом азота.

В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.

Квантовая яма — узкая потенциальная яма, которая ограничивает возможность движения частиц с трех до двух измерений, тем самым заставляя их перемещаться в плоском слое. Является двумерной системой. Квантово-размерные эффекты проявляют себя, когда ширина ямы становится сравнимой с длиной волны де Бройля частиц, и приводят к появлению энергетических подзон размерного квантования.
Матричная квантовая механика — это формулировка квантовой механики, созданная Вернером Гейзенбергом, Максом Борном и Паскуалем Йорданом в 1925 году. Матричная квантовая механика была первой концептуально автономной и логически непротиворечивой формулировкой квантовой механики. Её описание квантовых скачков заменило модель Бора для электронных орбит. Это было сделано путём интерпретации физических свойств частиц как матриц, которые эволюционируют во времени. Матричная механика эквивалентна волновой формулировке Шрёдингера квантовой механики на основе теоремы Риса — Фишера, как это проявляется в обозначениях бра и кет Дирака.
Ста́рая ква́нтовая тео́рия — подход к описанию атомных явлений, который был развит в 1900—1924 годах и предшествовал созданию квантовой механики. Характерная черта этой теории — одновременное использование классической механики и некоторых предположений, вступавших в противоречие с ней. Основа старой квантовой теории — модель атома Бора, к которой позднее Арнольд Зоммерфельд добавил квантование z-компоненты углового момента, неудачно названное пространственным квантованием. Квантование z-компоненты дало возможность ввести эллиптические электронные орбиты и предложить концепцию энергетического вырождения. Успех старой квантовой теории состоял в корректном описании атома водорода и нормального эффекта Зеемана.

Алексе́й Ива́нович Еки́мов — советский и американский учёный, специалист в области физики твёрдого тела и оптики. Доктор физико-математических наук. Лауреат Государственной премии СССР (1976) и Нобелевской премии по химии.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.