Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

Температу́ра — скалярная физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел.
Свобо́дная эне́ргия Ги́ббса — это величина, изменение которой в ходе химической реакции равно изменению внутренней энергии системы. Энергия Гиббса показывает, какая часть от полной внутренней энергии системы может быть использована для химических превращений или получена в их результате в заданных условиях и позволяет установить принципиальную возможность протекания химической реакции в заданных условиях. Математически это термодинамический потенциал следующего вида:

Хими́ческий потенциа́л
— термодинамическая функция, применяемая при описании состояния систем с переменным числом частиц. Определяет изменение термодинамических потенциалов при изменении числа частиц в системе. Представляет собой энергию добавления одной частицы в систему без совершения работы. Применяется для описания материального взаимодействия.
Пе́рвое нача́ло термодина́мики — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают одно из следствий закона сохранения энергии, из чего проистекает отсутствие единообразия формулировок первого начала, используемых в учебной и научной литературе.
Уравне́ние состоя́ния — соотношение, отражающее для конкретного класса термодинамических систем связь между характеризующими её макроскопическими физическими величинами, такими как температура, давление, объём, химический потенциал, энтропия, внутренняя энергия, энтальпия и др. Уравнения состояния необходимы для получения с помощью математического аппарата термодинамики конкретных результатов, касающихся рассматриваемой системы. Эти уравнения не содержатся в постулатах термодинамики, так что для каждого выбранного для изучения макроскопического объекта их либо определяют эмпирически, либо для модели изучаемой системы находят методами статистической физики. В рамках термодинамики уравнения состояния считают заданными при определении системы. Если изучаемый объект допускает термодинамическое описание, то это описание выполняют посредством уравнений состояния, которые для реальных веществ могут иметь весьма сложный вид.
Эне́ргия электромагни́тного по́ля — энергия, заключенная в электромагнитном поле. Сюда же относятся частные случаи чистого электрического и чистого магнитного поля.

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.
Эне́ргия Гельмго́льца — термодинамический потенциал, убыль которого в квазистатическом изотермическом процессе равна работе, совершённой системой над внешними телами.
Большой термодинамический потенциал — термодинамический потенциал, используемый для описания систем с переменным числом частиц. Был введён Гиббсом и обозначен им как
, поэтому иногда также называется омега-потенциалом.
Тепловой эффект химической реакции — изменение внутренней энергии
или энтальпии
системы вследствие протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:
- единственно возможной работой при этом является работа против внешнего давления,
- как исходные вещества, так и продукты реакции имеют одинаковую температуру.

Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Характеристическая функция — функция состояния термодинамической системы, рассматриваемая как математическая функция определённого набора термодинамических параметров — естественных независимых переменных — и характеризующаяся тем, что посредством этой функции, её частных производных по естественным переменным и самих естественных переменных могут быть выражены в явном виде все термодинамические свойства системы. После замены хотя бы одной из естественных переменных на другую независимую переменную функция перестаёт быть характеристической. При фиксированных естественных переменных характер изменения характеристической функции указывает на направление протекания самопроизвольного процесса. Характеристическая функция аддитивна: характеристическая функция всей системы равна сумме характеристических функций её частей. Функция состояния, представляющая собой характеристическую функцию для одних термодинамических систем, может не являться характеристической для других систем. Так, потенциал Гиббса и функция Планка для фотонного газа не являются характеристическими функциями, поскольку тождественно равны нулю.
Химическая переменная — в физической химии величина, которая отражает полноту протекания реакции, то есть то, на сколько изменился состав системы в ходе реакции.
Во многих случаях для предсказания поведения реального газа допустимо использовать модель идеального газа. При работе с данной моделью широко применяются термодинамические потенциалы, которые в данном частном случае приобретают более простой для расчётов вид.

Соотношения Максвелла — тождественные соотношения между производными термодинамических величин. Являются следствием математического тождества — равенства смешанных производных термодинамического потенциала.
Соотношения Бриджмена представляют собой базовый набор уравнений для термодинамических производных. Носят имя американского физика Перси Уильямса Бриджмена.