
Нейро́нная сеть — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.
Вербализа́ция — минимизированное описание работы синтезированной и уже обученной нейронной сети в виде нескольких взаимозависимых алгебраических или логических функций.
Де́льта-пра́вило — метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Дельта-правило развилось из первого и второго правил Хебба. Его дальнейшее развитие привело к созданию метода обратного распространения ошибки.
Рекуррентные нейронные сети — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи. Было предложено много различных архитектурных решений для рекуррентных сетей от простых до сложных. В последнее время наибольшее распространение получили сеть с долговременной и кратковременной памятью (LSTM) и управляемый рекуррентный блок (GRU).
Нейроуправление — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных, способностью адаптироваться к изменению свойств объекта управления и внешней среды, пригодностью для синтеза нелинейных регуляторов, высокой устойчивость к повреждениям своих элементов в силу изначально заложенного в нейросетевую архитектуру параллелизма. Термин «нейроуправление», впервые был использован одним из авторов метода обратного распространения ошибки Полом Дж. Вербосом в 1976 году. Известны многочисленные примеры практического применения нейронных сетей для решения задач управление самолетом, вертолетом, автомобилем-роботом, скоростью вращения вала двигателя, гибридным двигателем автомобиля, электропечью, турбогенератором, сварочным аппаратом, пневмоцилиндром, системы управления вооружением легкобронированных машин, моделью перевернутого маятника.

Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения. Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея свёрточных нейронных сетей заключается в чередовании свёрточных слоёв и субдискретизирующих слоёв. Структура сети — однонаправленная, принципиально многослойная. Для обучения используются стандартные методы, чаще всего метод обратного распространения ошибки. Функция активации нейронов — любая, по выбору исследователя.
Глубокое обучение — совокупность методов машинного обучения, основанных на обучении представлениям, а не специализированных алгоритмах под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е годы, но результаты не впечатляли, пока продвижения в теории искусственных нейронных сетей и вычислительные мощности середины 2000-х годов не позволили создавать сложные технологические архитектуры нейронных сетей, обладающие достаточной производительностью и позволяющие решать широкий спектр задач, не поддававшихся эффективному решению ранее, например, в компьютерном зрении, машинном переводе, распознавании речи, причём качество решения во многих случаях теперь сопоставимо, а в некоторых превосходит эффективность человека.
Сети адаптивного резонанса — разновидность искусственных нейронных сетей, основанная на теории адаптивного резонанса Стивена Гроссберга и Гейла Карпентера. Включает в себя модели обучения с учителем и без учителя, которые используются при решении задач распознавания образов и предсказания.
Адаптивная сеть на основе системы нечеткого вывода или Адаптивная нейро-нечеткая система вывода, ANFIS — это искусственная нейронная сеть, основанная на нечеткой системе вывода Такаги-Сугено.
Нейро-нечёткие системы или Нечёткие нейронные сети — это системы из области искусственного интеллекта, были предложены Ж. С. Р. Чангом, которые комбинируют методы искусственных нейронных сетей и систем на нечёткой логике. Нейро-нечёткие системы являются результатом попытки создания гибридной интеллектуальной системы, которая бы давала синергетический эффект этих двух подходов путём комбинирования человекоподобного стиля рассуждений нечётких систем с обучением и коннекционистской структурой нейронных сетей. Основная сила нейро-нечётких систем состоит в том, что они являются универсальными аппроксиматорами со способностью запрашивать интерпретируемые правила ЕСЛИ-ТО.
База данных MNIST — объёмная база данных образцов рукописного написания цифр. База данных является стандартом, предложенным Национальным институтом стандартов и технологий США с целью калибрации и сопоставления методов распознавания изображений с помощью машинного обучения в первую очередь на основе нейронных сетей. Данные состоят из заранее подготовленных примеров изображений, на основе которых проводится обучение и тестирование систем. База данных была создана после переработки оригинального набора чёрно-белых образцов размером 20x20 пикселей NIST. Создатели базы данных NIST, в свою очередь, использовали набор образцов из Бюро переписи населения США, к которому были добавлены ещё тестовые образцы, написанные студентами американских университетов. Образцы из набора NIST были нормализированы, прошли сглаживание и приведены к серому полутоновому изображению размером 28x28 пикселей.

Длинная цепь элементов краткосрочной памяти — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Из множества достижений LSTM-сетей можно выделить наилучшие результаты в распознавании несегментированного слитного рукописного текста, и победу в 2009 году на соревнованиях по распознаванию рукописного текста (ICDAR). LSTM-сети также используются в задачах распознавания речи, например LSTM-сеть была основным компонентом сети, которая в 2013 году достигла рекордного порога ошибки в 17,7 % в задаче распознавания фонем на классическом корпусе естественной речи TIMIT. По состоянию на 2016 год ведущие технологические компании, включая Google, Apple, Microsoft и Baidu, используют LSTM-сети в качестве фундаментального компонента новых продуктов.

Юрген Шмидху́бер — немецкий и швейцарский учёный, специалист в области искусственного интеллекта. Является содиректором Института исследований искусственного интеллекта Далле Молле в Манно в Южной Швейцарии.
Мишель (Миша) Маховальд — американский биолог, один из пионеров в области инженерной нейробиологии.
Рекурсивные нейронные сети — вид нейронных сетей, работающих с данными переменной длины. Модели рекурсивных сетей используют иерархические структуры образцов при обучении. Например, изображения, составленные из сцен, объединяющих подсцены, включающие много объектов. Выявление структуры сцены и её деконструкция- нетривиальная задача. При этом необходимо как идентифицировать отдельные объекты, так и всю структуру сцены.

В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием малого числа узлов. В искусственных нейронных сетях эта функция также называется передаточной функцией.
Снижение размерности в задачах статистики, машинного обучения и теории информации — набор техник преобразования данных, направленных на уменьшение числа переменных путём выявления главных переменных; в общем случае может быть разделено на отбор признаков и выделение признаков. Снижение размерности наборов данных позволяет снизить требуемое время и требуемую память для обработки набора, улучшить скорость моделей машинного обучения за счёт удаления мультиколлинеарности, проще представить данные визуально.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Оптимизация гиперпараметров — задача машинного обучения по выбору набора оптимальных гиперпараметров для обучающего алгоритма.