
Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц высоких энергий. Самые крупные ускорители являются дорогостоящими комплексами требующими международного сотрудничества. К примеру, Большой адронный коллайдер в ЦЕРН представляющий собой кольцо длиной почти 27 километров является результатом работы десятков тысяч учёных из более чем ста стран.

Синхротронное излучение — излучение электромагнитных волн релятивистскими заряженными частицами, движущимися по криволинейной траектории, то есть имеющими составляющую ускорения, перпендикулярную скорости. Синхротронное излучение создаётся в синхротронах, накопительных кольцах ускорителей, при движении заряженных частиц через ондулятор. Частота излучения может включать очень широкий спектральный диапазон, от радиоволн до рентгеновского излучения.

Синхротро́н — один из типов резонансных циклических ускорителей. Характеризуется тем, что в процессе ускорения частиц орбита пучка остаётся постоянного радиуса, а ведущее магнитное поле поворотных магнитов, определяющее этот радиус, возрастает во времени. Кроме того, остаётся постоянной частота ускоряющего электрического поля. Понятно, что для пучков ультрарелятивистских частиц период обращения определяется только длиной орбиты, и поскольку она не изменяется, то нет необходимости изменять частоту электрического поля. Поэтому все резонансные циклические ускорители лёгких частиц, а также высокоэнергетические протонные и ионные машины, такие как LHC и Тэватрон — это синхротроны. В синхротроне достигнуты энергии около 6,5 ТэВ для протонов (LHC) и более 100 ГэВ для электронов (LEP). Дальнейшее повышение энергии в электронных синхротронах требует сильного увеличения их размеров вследствие огромных потерь энергии на излучение. Потеря энергии за один оборот пропорциональна 4-й степени энергии частиц: W ~ E4/R.

Беватро́н — ускоритель, слабофокусирующий протонный синхротрон на энергию 6 ГэВ, работавший в Национальной лаборатории им. Лоуренса в 1954-1971 годы для проведения экспериментов в области физики высоких энергий и элементарных частиц, а в 1971-2009 годы в качестве бустера тяжёлых ионов для линейного ускорителя SuperHILAC.

Влади́мир Ио́сифович Ве́кслер — советский физик-экспериментатор, профессор. Основоположник ускорительной техники в СССР, создатель синхрофазотрона ОИЯИ. Член-корреспондент АН СССР (1946), академик АН СССР (1958), академик-секретарь Отделения ядерной физики АН СССР (1963—1966). Лауреат Ленинской премии и Сталинской премии первой степени.

Циклотро́н — резонансный циклический ускоритель нерелятивистских тяжёлых заряженных частиц, в котором частицы движутся в постоянном и однородном магнитном поле, а для их ускорения используется высокочастотное электрическое поле неизменной частоты.

Бетатро́н — циклический, но не резонансный ускоритель электронов с фиксированной равновесной орбитой, ускорение в котором происходит с помощью вихревого электрического поля. Предельно достижимая энергия в бетатроне: ≤ 300 МэВ.

Фазотро́н, синхроциклотро́н — циклический ускоритель тяжёлых заряженных частиц, в котором магнитное поле однородно и постоянно во времени, а частота ускоряющего электрического поля меняется.

Милтон Стэнли Ливингстон — американский физик, совместно с Эрнестом Лоуренсом создавший первый циклотрон (1930), автор многих пионерских работ в области физики ускорителей.

Ускоритель FFAG — тип резонансного циклического ускорителя, в котором сочетаются признаки циклотрона и современного синхротрона. Другое название FFAG — кольцевой фазотрон.

Синхрофазотрон ОИЯИ — слабофокусирующий протонный ускоритель типа синхрофазотрон на энергию до 10 ГэВ, находящийся в Объединённом институте ядерных исследований.

Микротро́н — тип резонансных циклических ускорителей электронов. В микротроне ведущее магнитное поле и частота ускоряющего поля постоянны, однако период обращения сгустка на каждом обороте изменяется, так чтобы каждый раз частицы приходили в ускоряющий зазор в правильной фазе высокочастотного электрического поля.

Принцип автофазировки — закон, обеспечивающий стабильность частицы в резонансном циклическом ускорителе в продольном направлении. Принцип был сформулирован В. И. Векслером (1944) и независимо Макмилланом (1945) и позволил создавать синхроциклотроны, а позже синхротроны для ускорения релятивистских частиц, что было невозможно в классическом циклотроне.
Бирмингемский синхротрон — циклический ускоритель протонов на энергию 1 ГэВ, один из первых в мире синхротронов, построенный в Бирмингемском университете в 1953 году под руководством Марка Олифанта.

У-70 — протонный синхротрон на энергию 70 ГэВ, сооружённый в 1967 году в Институте физики высоких энергий, Протвино. На момент сооружения энергия ускорителя была рекордной, до сих пор У-70 — самый высокоэнергетичный ускоритель в России. За разработку и ввод в действие синхротрона У-70 коллектив учёных был удостоен Ленинской премии в 1970 году.
Самуил Менделевич Рубчинский — учёный в области радиоэлектроники, лауреат Ленинской премии. Ученик и многолетний соратник А. Л. Минца.

Протонный синхротрон — циклический ускоритель в ЦЕРНе, жёсткофокусирующий протонный синхротрон, используемый для предварительного ускорения пучков протонов и ионов в инжекционной цепи Большого адронного коллайдера.

Alternating Gradient Synchrotron (AGS) — протонный синхротрон в Брукхейвенской национальной лаборатории. Один из первых синхротронов, использовавших новый принцип жёсткой фокусировки, и достигший рекордной энергии 33 ГэВ вскоре после запуска в 1960 году.
Владимир Алексеевич Никитин — советский и российский физик, доктор физико-математических наук, профессор кафедры физики элементарных частиц физического факультета МГУ, главный научный сотрудник ЛВЭ ОИЯИ, лауреат Государственной премии СССР (1983).

AWAKE в ЦЕРНе — это эксперимент для подтверждения принципа плазменного ускорения электронов с использованием пучка протонов высокой энергии в качестве драйвера, создающего кильватерный след. Его цель — ускорить сгусток электронов (витнесс) с энергией от 15 до 20 МэВ до нескольких ГэВ на небольшом расстоянии путём создания высокого темпа ускорения, до 1 ГэВ/м. Используемые в настоящее время ускорители частиц используют для ускорения стандартные или сверхпроводящие ВЧ-резонаторы, но они ограничены градиентом ускорения порядка 100 МэВ/м.