Сравнение программ глубокого обучения

Перейти к навигацииПерейти к поиску

Данная таблица проводит сопоставление фреймворков, библиотек программ и отдельных программ для глубокого обучения.

Обзор программ глубокого обучения

Наименование Разработчик Лицензия[a]ОткрытоеПлатформа Язык Интерфейс Поддержка OpenMPПоддержка OpenCLПоддержка CUDAАвтоматическое дифференцирование Предварительное обучение рекуррентные сетисвёрточные сетиМашина Больцмана/Глубокая сеть доверияПараллельные вычисления
Apache SINGA[англ.]Apache IncubatorApache 2.0ДаLinux, Mac OS X, WindowsC++Python, C++, JavaНет Да Да Неизвестно Да Да Да Да Да
CaffeBerkeley Vision and Learning Center Лицензия BSDДа Linux, Mac OS X, Windows[1]C++Python, MATLABДа В разработке [2]Да Да Да[3]Да Да Нет Неизвестно
Deeplearning4jГруппа Skymind, Adam Gibson Apache 2.0Да Linux, Mac OS X, Windows, Android (Кроссплатформенность) JavaJava, Scala, Clojure, Python (Keras) Да Нет[4]Да[5]Вычислительный граф Да[6]Да Да Да Да[7]
Dlib[англ.]Девис Кинг Лицензия Boost Да КроссплатформенностьC++Python, C++Да Нет Да Да Да Нет Да Да Да
KerasФрансуа Шолле Лицензия MITДа Linux, Mac OS X, WindowsPythonPythonЧерез TheanoВ стадии разработки через Theano, планируется через TensorFlowДа Да Да[8]Да Да Да Да[9]
Microsoft Cognitive ToolkitMicrosoft ResearchЛицензия MIT[10]Да Windows, Linux[11] (OSX в планах через Docker) C++Python, C++, командная строка,[12] BrainScript[13] (.NET в планах[14]) Да[15]Нет Да Да Да[16]Да[17]Да[17]Нет[18]Да[19]
MXNet[англ.]Distributed (Deep) Machine Learning Community Apache 2.0Да Linux, Mac OS X, Windows,[20][21] AWS, Android,[22] iOS, JavaScript[23]малая корневая библиотека на C++C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, PerlДа В планах[24]Да Да[25]Да[26]Да Да Да Да[27]
Neural Designer[англ.]Artelnics ПроприетарноеНет Linux, Mac OS X, Windows C++Графический интерфейс пользователяДа Нет Нет Неизвестно Неизвестно Нет Нет Нет Неизвестно
OpenNNArtelnics GNU LGPLДа КроссплатформенностьC++C++Да Нет Нет Неизвестно Неизвестно Нет Нет Нет Неизвестно
TensorFlowКоманда Google BrainApache 2.0Да Linux, Mac OS X, Windows[28]C++, PythonPython, C/C++, Java, Go Нет В планах[29][30]Да Да[31]Да[32]Да Да Да Да
TheanoМонреальский университетЛицензия BSDДа КроссплатформенностьPythonPythonДа В разработке [33]Да Да[34][35]Через зоопарк моделей Lasagne[36]Да Да Да Да[37]
TorchРонан Коллобер, Корай Кавукчоглу, Клемент Фарабет Лицензия BSDДа Linux, Mac OS X, Windows,[38] Android,[39] iOSC, LuaLua, LuaJIT,[40] C, библиотека утилит для C++/OpenCL[41]Да Внешняя реализация [42][43]Да[44][45]Через Autograd Твиттера[46]Да[47]Да Да Да Да[48]
MathematicaWolfram ResearchПроприетарноеНет Windows, Mac OS X, Linux, Облачные вычисленияC++командная строка, Java, C++Нет Да Да Да Да[49]Да Да Да Да
  1. отдельные компоненты библиотек могут обладать другими лицензиями

Примечания

  1. Microsoft/caffe. GitHub. Дата обращения: 22 июля 2017. Архивировано 22 апреля 2017 года. (англ.)
  2. OpenCL Caffe. Дата обращения: 22 июля 2017. Архивировано 22 марта 2017 года. (англ.)
  3. Caffe Model Zoo. Дата обращения: 22 июля 2017. Архивировано 24 ноября 2017 года. (англ.)
  4. Support for Open CL · Issue #27 · deeplearning4j/nd4j. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  5. N-Dimensional Scientific Computing for Java. Дата обращения: 22 июля 2017. Архивировано 16 октября 2016 года. (англ.)
  6. Chris Nicholson, Adam Gibson. Deeplearning4j Models. Дата обращения: 22 июля 2017. Архивировано из оригинала 11 февраля 2017 года. (англ.)
  7. Deeplearning4j. Deeplearning4j on Spark. Deeplearning4j. Дата обращения: 22 июля 2017. Архивировано из оригинала 13 июля 2017 года. (англ.)
  8. Keras Documentatin // Applications Архивная копия от 2 февраля 2017 на Wayback Machine (англ.)
  9. Does Keras support using multiple GPUs? · Issue #2436 · fchollet/keras Архивная копия от 5 марта 2017 на Wayback Machine (англ.)
  10. CNTK/LICENSE.md at master · Microsoft/CNTK · GitHub. GitHub. Дата обращения: 22 июля 2017. Архивировано 22 апреля 2017 года. (англ.)
  11. Setup CNTK on your machine. GitHub. Дата обращения: 22 июля 2017. Архивировано 8 мая 2017 года. (англ.)
  12. CNTK usage overview. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  13. BrainScript Network Builder. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  14. .NET Support · Issue #960 · Microsoft/CNTK. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  15. How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  16. (англ.) Prebuilt models for image classification · Issue #140 · Microsoft/CNTK · GitHub. Дата обращения: 4 января 2019. (англ.) Архивировано 5 марта 2017 года.
  17. 1 2 CNTK - Computational Network Toolkit. Microsoft Corporation. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  18. url=https://github.com/Microsoft/CNTK/issues/534 Архивная копия от 5 марта 2017 на Wayback Machine (англ.)
  19. Multiple GPUs and machines. Microsoft Corporation. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  20. Releases · dmlc/mxnet. Github. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  21. Installation Guide — mxnet documentation. Readthdocs. Дата обращения: 22 июля 2017. Архивировано 30 сентября 2016 года. (англ.)
  22. MXNet Smart Device. ReadTheDocs. Дата обращения: 22 июля 2017. Архивировано 21 сентября 2016 года. (англ.)
  23. MXNet.js. Github. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  24. Support for other Device Types, OpenCL AMD GPU · Issue #621 · dmlc/mxnet. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  25. http://mxnet.readthedocs.io/ (англ.) (недоступная ссылка)
  26. Model Gallery. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  27. Run MXNet on Multiple CPU/GPUs with Data Parallel. GitHub. Дата обращения: 22 июля 2017. Архивировано 28 сентября 2016 года. (англ.)
  28. TensorFlow 0.12 adds support for Windows Архивная копия от 20 марта 2017 на Wayback Machine (англ.)
  29. tensorflow/roadmap.md at master · tensorflow/tensorflow · GitHub. GitHub. (недоступная ссылка) (англ.)
  30. OpenCL support · Issue #22 · tensorflow/tensorflow. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  31. Архивированная копия. Дата обращения: 22 июля 2017. Архивировано из оригинала 2 июля 2016 года. (англ.)
  32. Источник. Дата обращения: 22 июля 2017. Архивировано 29 апреля 2017 года. (англ.)
  33. Using the GPU — Theano 0.8.2 documentation. Дата обращения: 22 июля 2017. Архивировано 1 апреля 2017 года. (англ.)
  34. Архивированная копия. Дата обращения: 22 июля 2017. Архивировано из оригинала 11 июля 2017 года. (англ.)
  35. (англ.) Группы Google
  36. Recipes/modelzoo at master · Lasagne/Recipes · GitHub. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  37. Using multiple GPUs — Theano 0.8.2 documentation Архивная копия от 4 мая 2017 на Wayback Machine (англ.)
  38. Home · torch/torch7 Wiki · GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года.
  39. GitHub - soumith/torch-android: Torch-7 for Android. GitHub. Дата обращения: 22 июля 2017. Архивировано 22 апреля 2017 года. (англ.)
  40. Torch7: A Matlab-like Environment for Machine Learning. Дата обращения: 22 июля 2017. Архивировано 6 марта 2016 года. (англ.)
  41. GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library. GitHub. Дата обращения: 22 июля 2017. Архивировано 22 апреля 2017 года. (англ.)
  42. Cheatsheet. GitHub. Дата обращения: 22 июля 2017. Архивировано 18 апреля 2017 года. (англ.)
  43. cltorch. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  44. Torch CUDA backend. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  45. Torch CUDA backend for nn. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  46. Источник. Дата обращения: 22 июля 2017. Архивировано 4 января 2017 года. (англ.)
  47. ModelZoo. GitHub. Дата обращения: 22 июля 2017. Архивировано 5 марта 2017 года. (англ.)
  48. (англ.) Cheatsheet · torch/torch7 Wiki · GitHub. Дата обращения: 4 января 2019. (англ.) Архивировано 18 апреля 2017 года.
  49. Источник. Дата обращения: 22 июля 2017. Архивировано 22 апреля 2017 года. (англ.)