
Кипе́ние — процесс интенсивного парообразования, который происходит в жидкости как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз, то есть на стенках сосудa образуются пузырьки, которые содержат воздух и насыщенный пар. Кипение, как и испарение, является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения. Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ. Процессы кипения широко применяются в различных областях человеческой деятельности. Например, кипячение является одним из распространённых способов физической дезинфекции питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получения кипятка. Также, процесс кипения применяется практически во всех типах холодильных установок, в том числе и в подавляющем большинстве бытовых холодильников и кондиционеров. Охлаждение воздуха в камере холодильника происходит именно благодаря кипению хладагента, причём в испарителе холодильной установки хладагент при пониженном давлении выкипает полностью. Кипение при постоянном давлении - неотъемлемый термодинамический процесс во всех тепловых двигателях, работающих по циклу Ренкина.
Свобо́дная эне́ргия Ги́ббса — это величина, изменение которой в ходе химической реакции равно изменению внутренней энергии системы. Энергия Гиббса показывает, какая часть от полной внутренней энергии системы может быть использована для химических превращений или получена в их результате в заданных условиях и позволяет установить принципиальную возможность протекания химической реакции в заданных условиях. Математически это термодинамический потенциал следующего вида:


Теплопрово́дность — способность материальных тел проводить тепловую энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Интерфере́нция све́та — интерференция электромагнитных волн — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.
Когере́нтность — в физике скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.
Адиабати́ческий, или адиаба́тный проце́сс — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке. В целом термин «адиабатический» в разных областях науки всегда подразумевает сохранение неизменным какого-то параметра. Так в квантовой химии, электронно-адиабатический процесс — это процесс, в котором не изменяется квантовое число электронного состояния. Например, молекула всегда остаётся в первом возбуждённом состоянии вне зависимости от изменения положения атомных ядер. Соответственно неадиабатическим называется процесс, в котором происходит изменение какого-то важного параметра.
Второ́е нача́ло термодина́мики устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия либо остаётся неизменной, либо возрастает, достигая максимума при установлении термодинамического равновесия. Встречающиеся в литературе различные формулировки второго начала термодинамики являются частными следствиями закона возрастания энтропии.
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет система (тело) в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.
Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к менее горячему, либо непосредственно, либо через посредника (проводника) или разделяющую перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к менее горячему, что является следствием второго закона термодинамики.
Для того чтобы ввести понятие регулярного теплового режима, рассмотрим процесс охлаждения (нагрева) в среде с постоянной температурой произвольного по форме однородного и изотропного тела, начальное распределение температур в котором в начальный момент времени τ = 0 задано известной функцией координат f(x, y, z,0)=T0. В целях упрощения записи будем, не уменьшая общности, считать температуру окружающей среды Tf = const. Уравнение теплопроводности в безразмерных переменных записывается как:
, где
— безразмерная температура- T = текущая температура тела
- Tf = температура среды
- T0 = начальная температура тела
- Fo = Число Фурье
Сла́бая локализа́ция — совокупность явлений, обусловленных эффектом квантово-механической интерференции электронов самих с собой в слабо разупорядоченных материалах с металлическим типом проводимости. Явления слабой локализации являются универсальными и проявляются в любых неупорядоченных проводниках — в металлическом стекле, тонких металлических плёнках, системах с двумерным электронным газом и других мезоскопических системах.
Закон Нью́тона — Ри́хмана — эмпирическая закономерность, выражающая тепловой поток между разными телами через температурный напор.
Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Аналогия Рейнольдса — аналогия между переносом тепла и трением.
Сопротивление теплопередаче ограждающих конструкций, коэффициент теплосопротивления, теплосопротивление, термическое сопротивление — один из важнейших теплотехнических показателей строительных материалов.

Техни́ческая термодина́мика — раздел термодинамики, занимающийся приложениями законов термодинамики в теплоэнергетике и теплотехнике. В технической термодинамике рассматривают:
- технические приложения основных принципов термодинамики к процессам преобразования теплоты в работу или, наоборот, работы в теплоту в тепловых машинах — двигателях, турбинах, компрессорах, холодильниках и т. д.; рассматриваются теоретические основы работы тепловых машин и оценки эффективности их рабочих процессов.
- методы прямого преобразования теплоты в электрическую энергию;
- процессы теплообмена ;
- теплотехнические свойства веществ.
Стаби́льные элемента́рные части́цы — элементарные частицы, имеющие бесконечно большое время жизни в свободном состоянии. Стабильными элементарными частицами являются частицы, имеющие минимальные массы при заданных значениях всех сохраняющихся зарядов. Есть гипотеза о нестабильности протона и антипротона — распад протона.

Кожухотрубный (кожухотрубчатый) теплообменник относится к теплообменникам, в котором поверхность теплообмена между двумя потоками сформирована из труб, заключённых в кожух, а теплообмен осуществляется через поверхность этих труб.
В технике, физике и химии изучение явлений переноса касается обмена массой, энергией, зарядом, импульсом и угловым моментом в исследуемых системах. Хотя явления переноса опираются на такие разные области, как механика сплошных сред и термодинамика, в них уделяют большое внимание общности между рассматриваемыми темами. Перенос массы, количества движения и тепла имеет очень схожую математическую основу, и параллели между ними используются при изучении явлений переноса для выявления глубоких математических связей, которые часто предоставляют очень полезные инструменты для анализа одной области, которые напрямую выводятся из других.
Модель рынка либор или Модель BGM, а также иногда логнормальная модель форвардных ставок - в финансовой математике это модель динамики совокупности форвардных ставок в единой мере, используемая при оценке процентных производных инструментов, особенно экзотических производных инструментов.