
Окси́д алюми́ния Al2O3 — белое тугоплавкое вещество, бинарное соединение алюминия и кислорода. В природе распространён в виде глинозёма, составляющая часть глин, нестехиометрической смеси оксидов алюминия, калия, натрия, магния и т. д. В модификации корунда имеет атомную кристаллическую решётку.

Печа́тная пла́та — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы. Печатная плата предназначена для электрического и механического соединения различных электронных компонентов. Электронные компоненты на печатной плате соединяются своими выводами с элементами проводящего рисунка обычно пайкой.

Постоя́нная решётки, или параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как a, b, c. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися под углом 120 градусов, и третьим ребром, перпендикулярным им, называют гексагональной.

Металлиза́ция — метод модификации свойств поверхности изделия путём нанесения на его поверхность слоя металла. Металлизации подвергаются как неметаллические поверхности так и металлические. В последнем случае металлизацией наносится другой материал, например, более твердый или коррозионно-стойкий. Часто «металлизацией» называют напыление металла методами газотермического напыления.

Нитри́д га́ллия — бинарное неорганическое химическое соединение галлия и азота. Химическая формула GaN. При обычных условиях очень твёрдое вещество с кристаллической структурой типа вюрцита. Прямозонный полупроводник с широкой запрещённой зоной — 3,4 эВ.

Печа́тная электро́ника — область электроники, занимающаяся созданием электронных схем с помощью печатного оборудования, которое позволяет наносить на поверхность плоской подложки специальные чернила и, таким образом, формировать на ней активные и пассивные элементы, а также межэлементные соединения в соответствии с электрической схемой.

Диэлектри́ческое зе́ркало — зеркало, отражающие свойства которого формируются благодаря покрытию из нескольких чередующихся тонких слоёв из различных диэлектрических материалов. При надлежащем выборе материалов и толщин слоёв можно создать оптические покрытия с требуемым отражением на выбранной длине волны. Диэлектрические зеркала могут обеспечивать очень большие коэффициенты отражения,, которые обеспечивают отражение более 0,99999 падающего света. Такие зеркала также могут обеспечить хорошее отражение в широком диапазоне длин волн, например, во всём видимом диапазоне спектра.

Атомно-слоевое осаждение (АСО) — это технология осаждения тонких плёнок, которая базируется на последовательных химических реакциях между паром и твёрдым телом и имеет свойство самоограничения. Большинство АСО-реакций используют два химических соединения, которые обычно называют прекурсорами. Такие прекурсоры поочередно вступают в реакцию с поверхностью. В результате многократного влияния прекурсоров происходит рост тонкой плёнки.

Гибридная интегральная схема — интегральная схема, в которой наряду с элементами, неразъёмно связанными на поверхности или в объёме подложки, используются навесные микроминиатюрные элементы. В зависимости от метода изготовления неразъёмно связанных элементов различают гибридные, плёночную и полупроводниковую интегральные схемы.

Нитевидный нанокристалл (ННК), часто называемый также нановискер или нанонить, нанопроволока, а также наностержень — это одномерный наноматериал, длина которого значительно превосходит остальные измерения, которые, в свою очередь, не превышают нескольких десятков нанометров.

Термическое напыление — широко распространённый метод вакуумного напыления. Исходный материал испаряется в вакууме. Вакуум позволяет частицам пара конденсироваться непосредственно на напыляемом изделии (подложке). Термическое напыление используется в микротехнологии и для изготовления таких изделий, как металлизированная пластиковая плёнка или тонированные стёкла.

Органический полевой транзистор — полевой транзистор, использующийся в органической электронике. Органические полевые транзисторы могут быть получены либо при помощи вакуумного напыления малых молекул, либо при помощи механического переноса из очищенного монокристаллического слоя в субстрате на подложку. Эти устройства были разработаны для реализации недорогих электронных устройств большой площади и для биоразлагаемой электроники. Органические полевые транзисторы могут иметь различную структуру и геометрию. Наиболее распространенная форма — верхний затвор и нижние сток и исток, потому что эта структура подобна структуре обычного МДП транзистора на кремниевой подложке. Другие органические полимеры, такие как полиметилметакрилат, могут быть использованы в качестве диэлектрика.
Феррит висмута (BiFeO3, также известен как BFO в научной литературе) — это неорганическое соединение со структурой перовскита и один из перспективных мультиферроиков. При комнатной температуре BiFeO3 принадлежит пространственной группе R3c. Он синтезируется в объёмной или тонкопленочной форме, каждая из которых имеет антиферромагнитную (упорядочение G-типа) температуру точки Нееля и сегнетоэлектрическую[что?] температуру точки Кюри. Сегнетоэлектрическая поляризация достигает значений 90-95 мкКл/см2 и происходит вдоль псевдокубического направления.
Твёрдофазная эпитаксия сокр., ТФЭ — способ наращивания эпитаксиальной плёнки, при котором сначала при пониженной температуре осаждается неупорядоченная (аморфная) плёнка, после чего проводится её кристаллизация при более высоких температурах.

Бромид церия(III) — неорганическое соединение церия с бромом, цериевая соль бромоводородной кислоты, белые гигроскопичные кристаллы. Растворяется в воде.
Cегнетоэлектрический металл или металлический сегнетоэлектрик — это металл, который обладает электрическим дипольным моментом. Его малый объём обладает поляризацией. Существование таких металлов контринтуитивно, потому что свободный электрический заряд в металле может свободно перетекать и должен нейтрализовать поляризацию, однако существование таких материалов экспериментально установленный факт. Впервые сегнетоэлектрический эффект в металле наблюдался в монокристаллах купратных сверхпроводников YBa2Cu3O7-δ,. Поляризация наблюдалась вдоль одной оси (001) с помощью измерений пироэлектрического эффекта, и было показано, что знак поляризации обратим, а его величина контролируется с помощью электрического поля. При этом поляризация исчезала в сверхпроводящем состоянии. Соответствующие искажения решетки считались результатом смещения ионов кислорода, вызванного легированными зарядами, нарушающими симметрию центра инверсии. Этот эффект используют для изготовления пироэлектрических детекторов для космических приложений, из-за большого пироэлектрического коэффициента и низкого внутреннего сопротивления. Другим семейством веществ, которое можно отнести к металлическим сегнетоэлектрикам, — никелатные перовскиты. Например, сегнетоэлектрические свойства, демонстрирует металлический никелат лантана, LaNiO 3. В тонкой пленке LaNiO 3, выращенной на поверхности кристалла (111) алюмината лантана (LaAlO3), наблюдались сегнетоэлектрический эффект и проводимость при комнатной температуре. Однако удельное сопротивление этой системы возрастает с понижением температуры, следовательно, он не полностью соответствует определению металла. Также при росте толщины плёнки до 3 или 4 элементарных ячеек (1-2 нм) на кристаллической грани (100) LaAlO 3, LaNiO 3 проявляет сегнетоэлектрикие свойства как проводник или изолятор в зависимости от в зависимости от полярности поверхности. Осмат лития LiOsO 3 также демонстрирует сегнетоэлектрический переход при охлаждении ниже 140 К. Точечная группа симметрии кристалла меняется с R3c на R3c, теряя центральную симметрию. При комнатной температуре и ниже осмат лития — электрический проводник в монокристаллической, поликристаллической или порошковой форме, а сегнетоэлектрическая форма появляется только при температуре ниже 140 К. При температуре выше 140 К материал ведет себя как обычный металл.

Плазмоника или наноплазмоника относится к генерации, обнаружению и обработке сигналов на оптических частотах вдоль границ раздела металл-диэлектрик в нанометровом диапазоне. Так же как и фотоника, плазмоника следует тенденции миниатюризации оптических устройств и находит применение в зондировании, микроскопии, оптической связи и биофотонике.

Контактное сопротивление — сопротивление контактной области между различными материалами, например контакт металл-полупроводник. Контактное сопротивление даёт вклад в общее сопротивление системы, которое можно отнести к интерфейсам контакта электрических выводов и соединений, а не к собственному сопротивлению материала. Этот эффект в англоязычной литературе описывается термином «электрическое контактное сопротивление» англ. electrical contact resistance (ECR) и возникает в результате ограниченных площадей истинного контакта на границе раздела и присутствия резистивных поверхностных плёнок или оксидных слоёв. ECR может изменяться со временем, чаще всего уменьшаясь в процессе, известном как ползучесть сопротивления. Идея падения потенциала на инжекционном электроде была введена Уильямом Шокли, чтобы объяснить разницу между экспериментальными результатами и моделью постепенного приближения канала. В дополнение к термину ECR также используются интерфейсное сопротивление, переходное сопротивление. Термин «паразитное сопротивление» используется как более общий термин, в котором обычно предполагается, что контактное сопротивление является основным компонентом.
Модель Форухи — Блумер — дисперсионные уравнения для среды с поглощением выведенные А. Р. Форухи и И. Блумер для комплексного показателя преломления n +ik, которые были опубликованы в 1986 и 1988 годах. Публикация 1986 г. относится к аморфным материалам, а публикация 1988 г. — к кристаллическим. Впоследствии, в 1991 году, их работа была включена в качестве главы в «Справочник оптических констант». Дисперсионные уравнения Форухи — Блумер описывают, как фотоны различной энергии взаимодействуют с тонкими плёнками. При использовании в спектроскопической рефлектометрии дисперсионные уравнения Форухи — Блумер позволяют определять n и k для аморфных и кристаллических материалов как функции энергии фотона E. Значения n(E) и k(E) называются спектрами n и k, которые также могут выражаться в зависимости от длины волны света λ, поскольку E = hc/λ, где h - постоянная Планка, а c — скорость света в вакууме. Вместе n и k часто называют «оптическими константами» материала.

Монослои дихалькогенидов переходных металлов (ДПМ) представляют собой атомарно тонкие кристаллы типа MX2, где M — атом переходного металла (Mo, W и другие), а X — атом халькогена (S, Se или Te). Один слой атомов М зажат между двумя слоями атомов Х. Они являются частью большого семейства так двумерных кристаллов, названных так, чтобы подчеркнуть их необычайную тонкость. Например, толщина монослоя MoS2 составляет всего 6,5 Å. Ключевой особенностью этих материалов является взаимодействие крупных атомов в 2D-структуре по сравнению с дихалькогенидами переходных металлов первого ряда, например, WTe2 проявляет аномальное гигантское магнитосопротивление и сверхпроводимость.