Уравнение Дира́ка — релятивистски инвариантное уравнение движения для биспинорного классического поля электрона, применимое также для описания других точечных фермионов со спином 1/2; установлено Полем Дираком в 1928 году.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Уровни Ландау — энергетические уровни заряженной частицы в магнитном поле. Впервые получены как решение уравнения Шрёдингера для электрона в магнитном поле Л. Д. Ландау в 1930 году. Решением этой задачи являются собственные значения и собственные функции гамильтониана квантового гармонического осциллятора. Уровни Ландау играют существенную роль в кинетических и термодинамических явлениях в присутствии сильного магнитного поля.
Уравнение Клейна — Гордона — релятивистская версия уравнения Шрёдингера:
- ,
Гамильтониа́н в квантовой теории — оператор полной энергии системы. Название «гамильтониан», как и название «функция Гамильтона», происходит от фамилии ирландского математика Уильяма Роуэна Гамильтона.
В квантовой механике ток вероятности описывает изменение функции плотности вероятности.
Ко́мптоновская длина́ волны́ — параметр элементарной частицы: величина размерности длины, характерная для релятивистских квантовых процессов, идущих с участием этой частицы. Название параметра связано с именем А. Комптона и комптоновским эффектом.
Ква́нтовый гармони́ческий осцилля́тор — физическая модель в квантовой механике, представляющая собой параболическую потенциальную яму для частицы массой и являющаяся аналогом простого гармонического осциллятора. При анализе поведения данной системы рассматриваются не силы, действующие на частицу, а гамильтониан, то есть полная энергия осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
Фоковское состояние — это квантовомеханическое состояние с точно определённым количеством частиц. Названо в честь советского физика В. А. Фока.
Свобо́дная части́ца — термин, используемый в физике для обозначения частиц, которые не взаимодействуют с другими телами и имеют только кинетическую энергию.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем, В. Гейзенбергом, Э. Шрёдингером, Н. Бором. Завершил создание математических основ квантовой механики и придал им современную форму П. А. М. Дирак. Отличительным признаком математических уравнений квантовой механики является наличие в них символа постоянной Планка.
В теоретической физике, теория волны-пилота является первым известным примером теории со скрытыми переменными.
Теория де Бройля — Бома, также известная как теория волны-пилота, механика Бома, интерпретация Бома и причинная интерпретация, является интерпретацией квантовой теории. В дополнение к волновой функции на пространстве всех возможных конфигураций, она постулирует реальную конфигурацию, которая существует, даже не будучи измеряемой. Эволюция конфигурации во времени определяется волновой функцией с помощью управляющего уравнения. Эволюция волновой функции во времени задаётся уравнением Шрёдингера. Теория названа в честь Луи де Бройля (1892—1987) и Дэвида Бома (1917—1992).
Группа Шрёдингера — это группа симметрии конфигурационного пространства уравнения Шрёдингера. Её образуют преобразования, отображающие физически эквивалентные точки конфигурационного пространства друг в друга. Группа Шрёдингера может быть определена из общих физических соображений. В неё входят: преобразование, осуществляющее перестановку электронов; преобразование, осуществляющее вращение системы координат; преобразование Галилея.
В теоретической физике, суперсимметричная квантовая механика — это область исследований, где математические понятия из области физики высоких энергий применяются в области квантовой механики. Суперсимметрия, под которой понимают преобразование из бозонных операторов в фермионные и обратно, объединяет непрерывные преобразования (бозонные) и дискретные (фермионные). В современной теории бозоны связывают с переносчиками взаимодействия, а фермионы с материей, но суперсимметрия смогла объединить эти два понятия. Суперсимметрия оказалась также полезной для борьбы с расходимостями в квантовой теории поля, что обусловило интерес к этой теории.
Концептуальные программы в физике — принятые в физике наиболее общие математические модели. Различные области физики имеют различные программы для моделирования состояний физических систем.
В теоретической физике приближение эйконала или эйкональное приближение представляет собой приближенный метод, полезный в задачах о рассеянии частиц и волн, которые встречаются в оптике, сейсмологии, квантовой механике, квантовой электродинамике и разложении по парциальным волнам.
Релятивистская квантовая механика (РКМ) — раздел квантовой физики, в котором рассматриваются релятивистские квантовые законы движения микрочастиц в одночастичном приближении. Более обще, это любая ковариантная формулировка квантовой механики (КМ). Эта теория применима к массивным частицам, движущимися со всеми скоростями, вплоть до сравнимых со скоростью света c, и к безмассовым частицам. Теория применяется в физике высоких энергий, физике элементарных частиц и физике ускорителей, а также в атомной физике, квантовой химии и физике конденсированного состояния. Нерелятивистская квантовая механика в математической формулировке квантовой механики, применяется в контексте теории относительности Галилея, в частности, к квантованию уравнений классической механики путём замены динамических переменных операторами. Релятивистская квантовая механика — это квантовая механика, применяемая совместно со специальной теорией относительности (СТО). Хотя более ранние формулировки, такие как представления Шрёдингера и Гейзенберга, изначально были сформулированы в нерелятивистской форме, некоторые из них также учитывают СТО.