
Теорема Бонне
Теорема Бонне может означать:
- Достаточное условие существования поверхности с данной первой и второй квадратичной формой, ― см. уравнения Петерсона ― Кодацци.
- Теорема Бонне о линейчатой поверхности.
- Теорема Бонне о поверхности Дарбу.
Теорема Бонне может означать:
Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства. Эйлерова характеристика пространства обычно обозначается
.
Формула Гаусса — Бонне связывает эйлерову характеристику поверхности с её гауссовой кривизной и геодезической кривизной её границы.
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её.
Теорема Гёделя может означать одну из следующих теорем, доказанных Куртом Гёделем:
Теорема Гаусса — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь между потоком напряжённости электрического поля сквозь замкнутую поверхность произвольной формы и алгебраической суммой зарядов, расположенных внутри объёма, ограниченного этой поверхностью. Применяется отдельно для вычисления электростатических полей.
Линейчатая поверхность ― поверхность, образованная движением прямой линии. Прямые, принадлежащие этой поверхности, называются прямолинейными образующими, а каждая кривая, пересекающая все прямолинейные образующие, направляющей кривой.
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью, а также обобщения на другие размерности.
Клеро — имя собственное; распространено в виде фамилий.
Теорема о сумме углов многоугольника выражает сумму углов евклидова многоугольника через число его сторон.
Теорема Пуанкаре:
Гу́рвиц — еврейская фамилия. Производная от фамилии Горовиц.
Плана́рный граф — граф, который можно изобразить на плоскости без пересечений рёбер не по вершинам. Какое-либо конкретное изображение планарного графа на плоскости без пересечения рёбер не по вершинам называется плоским графом. Иначе говоря, планарный граф изоморфен некоторому плоскому графу, изображённому на плоскости так, что его вершины — это точки плоскости, а рёбра — кривые на плоскости, которые если и пересекаются между собой, то только по вершинам. Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань, называемая внешней гранью. Любой плоский граф может быть спрямлён, то есть перерисован на плоскости так, что все его рёбра будут отрезками прямых.
Изгибаемый многогранник — многогранник, чью пространственную форму можно изменить непрерывной во времени деформацией, при которой каждая грань не изменяет своих размеров, а деформация осуществляется только за счёт непрерывного изменения двугранных углов. Такая деформация называется непрерывным изгибанием многогранника.
Теорема Минковского о многогранниках — общее название двух теорем о существовании и единственности замкнутого выпуклого многогранника с заданными направлениями и площадями граней.
Теорема Александрова о развёртке — теорема о существовании и единственности замкнутого выпуклого многогранника с данной развёрткой, доказанная Александром Даниловичем Александровым. Единственность в этой теореме является обобщением теоремы Коши о многогранниках и имеет схожее доказательство.
Существует несколько утверждений, называемых теоремой Гаусса:
Теорема Линделёфа — ряд результатов, установленных финским математиком Лоренцем Линделёфом или его сыном топологом Эрнстом Линделёфом:
Theorema Egregium — исторически важный результат в дифференциальной геометрии, доказанный Гауссом. В современной формулировке теорема утверждает следующее:
Формулой Гаусса называются некоторые формулы, названные в честь немецкого математика Карла Гаусса:
В 1601 году произошли различные научные и технологические события, некоторые из которых представлены ниже.