t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез, основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
Среднеквадрати́ческое отклонение — наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. Обычно означает квадратный корень из дисперсии случайной величины, но иногда может означать тот или иной вариант оценки этого значения.
Ковариа́ция или корреляционный момент
случайных величин — в теории вероятностей и математической статистике мера зависимости двух случайных величин.

Центра́льные преде́льные теоре́мы (ЦПТ) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы, имеет распределение, близкое к нормальному.

Логнорма́льное распределе́ние (логарифмически-нормальное) в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений. Если случайная величина имеет логнормальное распределение, то её логарифм имеет нормальное распределение.

Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений. Уильям Сили Госсет первым опубликовал работы, посвящённые этому распределению, под псевдонимом «Стьюдент».

Многоме́рное норма́льное распределе́ние в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.

Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.
Вы́борочное (эмпири́ческое) сре́днее — это приближение теоретического среднего распределения, основанное на выборке из него.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий:
- смещённая;
- несмещённая, или исправленная
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером между 1912 и 1922 годами.
Асимптоти́чески норма́льная оце́нка — в математической статистике оценка, распределение которой стремится к нормальному при увеличении размера выборки.
Доверительный интервал для математического ожидания — интервал, который с известной вероятностью содержит математическое ожидание генеральной совокупности.
F-тест или критерий Фишера — статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Z-тест — класс методов статистической проверки гипотез, основанных на нормальном распределении. Обычно применяется для проверки равенства средних значений при известной дисперсии генеральной совокупности или при оценке выборочного среднего стандартизованных значений. Z-статистика вычисляется как отношение разницы между случайной величиной и математическим ожиданием к стандартной ошибке этой случайной величины:

t-критерий Уэлча — тест, основанный на распределении Стьюдента и предназначенный для проверки статистической гипотезы о равенстве математических ожиданий случайных величин, имеющих необязательно равные известные дисперсии. Является модификацией t-критерия Стьюдента. Назван в честь британского статистика Бернарда Льюиса Уэлча.
Эта страница основана на
статье Википедии.
Текст доступен на условиях лицензии
CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и звуки доступны по их собственным лицензиям.