
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. На языке КТП основываются физика высоких энергий и физика элементарных частиц, её математический аппарат используется в физике конденсированного состояния. КТП в виде Стандартной модели в настоящее время является единственной экспериментально подтверждённой теорией, способной описывать и предсказывать результаты экспериментов при достижимых в современных ускорителях высоких энергиях.
Спин — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с движением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Фото́н — фундаментальная частица, квант электромагнитного излучения в виде поперечных электромагнитных волн и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать, только двигаясь со скоростью света. Электрический заряд фотона равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются буквой γ.

Фермио́н — частица или квазичастица с полуцелым значением спина. Все частицы можно разделить на две группы в зависимости от значения их спина: частицы с целым спином относятся к бозонам, с полуцелым — к фермионам.
Парадокс Эйнште́йна — Подо́льского — Ро́зена — парадокс, предложенный для указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, без непосредственного воздействия на этот объект. Целью такого косвенного измерения является попытка извлечь больше информации о состоянии микрообъекта, чем даёт квантовомеханическое описание его состояния.
Телепорта́ция — гипотетическое изменение координат объекта (перемещение), при котором траектория объекта не может быть описана математически непрерывной функцией времени. Наблюдается квантовая телепортация, но также были описаны несколько других видов телепортации.

Магни́тное по́ле — поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения; магнитная составляющая электромагнитного поля.

Принцип исключения Паули — квантово-механический принцип, который гласит, что два или более идентичных фермиона не могут одновременно находиться в одном и том же квантовом состоянии в квантовой системе. Этот принцип был сформулирован австрийским физиком Вольфгангом Паули в 1925 году для электронов, а затем распространился на все фермионы в его теореме о связи спина со статистикой в 1940 году.

Электромагни́тное взаимоде́йствие или электромагнетизм — одно из четырёх фундаментальных взаимодействий. Существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Безма́ссовые части́цы (люксо́ны) — частицы, масса которых равна нулю. Всегда движутся со скоростью света. Способны изменять своё направление движения, энергию и импульc. Не имеют аналога в нерелятивистской механике.
Теории скрытых параметров — в квантовой механике теории, предложенные для решения проблемы квантовомеханического измерения путём ввода гипотетических внутренних параметров, присущих измеряемым системам. Значения таких параметров не могут быть измерены экспериментально, но определяют результат измерения других параметров системы, описываемых в квантовой механике волновыми функциями и/или векторами состояния.
Действие в физике — скалярная физическая величина, являющаяся мерой движения физической системы. Действие является математическим функционалом, который берёт в качестве аргумента траекторию движения физической системы и возвращает в качестве результата вещественное число.
Субатомная частица — частица, намного меньшая, чем атом. Рассматриваются два типа субатомных частиц: фундаментальные частицы, которые, согласно современным теориям, не состоят из других частиц; и составные частицы. Физика частиц и ядерная физика изучают эти частицы и как они взаимодействуют. Идея частицы подверглась серьёзному переосмыслению, когда эксперименты показали, что свет может вести себя как поток частиц, а также проявлять свойства волны. Это привело к появлению концепции корпускулярно-волнового дуализма, отражающей, что «частицы» в квантовом масштабе ведут себя как частицы и волны. Другая концепция, принцип неопределённости, утверждает, что некоторые их свойства, такие, как их одновременное положение и импульс, будучи взятыми вместе, не могут быть точно измерены. Позднее было показано, что дуальность волны и частицы применимы не только к фотонам, но и к более массивным частицам.
Теоре́ма о запре́те клони́рования — утверждение квантовой теории о невозможности создания идеальной копии произвольного неизвестного квантового состояния. Теорема была сформулирована Вуттерсом, Зуреком и Диэксом в 1982 году и имела огромное значение в области квантовых вычислений, квантовой теории информации и смежных областях.
Теорема о свободе воли Джона Х. Конвея и Саймона Б. Коушена утверждает, что если у нас есть свобода воли в том смысле, что наш выбор не является функцией прошлого, то с учётом некоторых допущений, она есть и у некоторых элементарных частиц. Статья Конвея и Коушена была опубликована в журнале Основы физики в 2006 году. В 2009 году они опубликовали более сильную версию теоремы в Notices of the AMS. Позже, в 2017 году, Коушен проработал ещё некоторые детали.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.
Теорема Вайнберга — Виттена — утверждение в квантовой теории поля, при очень общих предположениях вводящее запрет на существование частиц с перечисленными свойствами. Является одной из так называемых теорем запрета квантовой теории поля. Предполагая справедливость специальной теории относительности Эйнштейна, она указывает максимальный спин безмассовых частиц, являющихся переносчиками зарядов. Наиболее важным выводом из теоремы Вайнберга — Виттена является то, что гравитон, если он существует, должен быть фундаментальной частицей.
Релятивистская квантовая механика (РКМ) — раздел квантовой физики, в котором рассматриваются релятивистские квантовые законы движения микрочастиц в одночастичном приближении. Более обще, это любая ковариантная формулировка квантовой механики (КМ). Эта теория применима к массивным частицам, движущимися со всеми скоростями, вплоть до сравнимых со скоростью света c, и к безмассовым частицам. Теория применяется в физике высоких энергий, физике элементарных частиц и физике ускорителей, а также в атомной физике, квантовой химии и физике конденсированного состояния. Нерелятивистская квантовая механика в математической формулировке квантовой механики, применяется в контексте теории относительности Галилея, в частности, к квантованию уравнений классической механики путём замены динамических переменных операторами. Релятивистская квантовая механика — это квантовая механика, применяемая совместно со специальной теорией относительности (СТО). Хотя более ранние формулировки, такие как представления Шрёдингера и Гейзенберга, изначально были сформулированы в нерелятивистской форме, некоторые из них также учитывают СТО.
Аксиомы Уайтмана — исходные теоретические положения, лежащие в основе аксиоматического подхода в квантовой теории поля, использующего математическое описание квантованных полей при помощи представления Гейзенберга и вакуумных средних от произведений операторов поля.