Теория изгиба балок Тимошенко была развита Степаном Прокофьевичем Тимошенко в начале XX века.[1][2] Модель учитывает сдвиговую деформацию и вращательные изгибы, что делает её применимой для описания поведения толстых балок, сэндвич-панелей и высокочастотных колебаний балок, когда длина волны этих колебаний становится сравнимой с толщиной балки. В отличие от модели изгиба балок Эйлера-Бернулли модель Тимошенко приводит к уравнению четвертого порядка, которое также содержит и частные производные второго порядка. Физически учёт механизмов деформации эффективно снижает жёсткость балки и приводит к большему отклонению при статической нагрузке и к предсказанию меньших собственных частот для заданного набора граничных условий. Последнее следствие наиболее заметно для высоких частот, поскольку длина волны колебаний становится короче и расстояние между противоположно направленными сдвиговыми силами уменьшается.
Если модуль сдвига материала балки положить равным бесконечности (и следовательно запретить балке испытывать сдвиговые деформации) и если пренебречь эффектами инерции на вращение, то модель Тимошенко сводится к обычной теории изгиба балки.
Сравнение деформации балки по Тимошенко (синий цвет) с деформацией по теории Эйлера-Бернулли (красный цвет).Деформация балки по Тимошенко. Нормаль поворачивается на угол , который не равен .
В статической теории балки Тимошенко без осевых эффектов смещение балки предполагается заданным в следующем виде: где задают координаты точки на балке, — компоненты вектора смещения в трех координатных направлениях, — есть угол вращения нормали по отношению срединной поверхности балки и — смещение срединной поверхности в направлении оси .
В статическом пределе теория изгиба балки Тимошенко эквивалентна теории изгиба балок Эйлера-Бернулли в случае, когда последним слагаемым можно пренебречь. Это приближение справедливо когда: где
называется сдвиговым коэффициентом Тимошенко и зависит от формы сечения балки. Для балки прямоугольного сечения .
— распределение нагрузки (сила приложенная к единице длины).
Комбинируя эти два уравнения получаем в случае однородной балки постоянного сечения:
Изгибающий момент и сдвиговая сила в балке связаны со смещением и вращением . В случае линейной упругой балки Тимошенко эти связи имеют следующий вид:
Вывод квазистатических уравнений изгиба балок по Тимошенко
Из кинематических предположений для балки Тимошенко смещение балки даётся:
Далее, в случае малых деформаций в рамках предположений Тимошенко можно написать: Поскольку реальные сдвиговые деформации балки непостоянны в пределах сечения, введём корректирующий фактор такой, что:
Изменение внутренней энергии балки можно записать в виде:
Зададим:
Тогда:
Интегрируя по частям и замечая, что граничные условия обращают изменение энергии на концах балки в нуль, пишем:
Изменение внешней работы, совершенной над балкой поперечной нагрузкой на единицу длины, равно:
Тогда для квазистатичной балки принцип виртуальной работы дает:
Исходные уравнения для балки исходя из фундаментальной теоремы вариационного исчисления обретают вид:
Для линейной упругой балки:
Следовательно, основные уравнения для балки могут быть записаны в виде:
Двухопорные балки: Смещение задается равным нулю в местах расположения двух опор. Также нужно задать изгибающий момент, приложенный к балке. Вращение и поперечная сдвиговая сила не заданы.
Жёстко защемлённая балка (консоль): Смещение и вращение задаются равными нулю в месте защемленного конца балки. Если один из концов балки свободен, то сдвиговая сила и изгибающий момент необходимо задать для этого конца.
Пример: Жестко защемленная балка
Жестко защемленная балка Тимошенко со свободным концом при точечной нагрузке
Для жестко защемленной балки один конец защемлен, а другой остается свободным. Будем использовать правовинтовую систему координат, в которой направление оси считается положительным в направлении вправо, а направление оси положительно в направлении вверх. Следуя традиционным соглашениям мы предположим, что положительные значения сил направлены в положительном направлении осей и , а положительные изгибающие моменты действуют по часовой стрелке. Также предположим следующее соглашение о знаках компонент механических напряжений ( и ): положительные изгибающие моменты сжимают материал балки внизу (меньшие значения координат ), положительные сдвиговые силы вращают балку против часовой стрелки.
Предположим, что защемленный конец балки имеет координату ,а свободный конец — . Если точечная нагрузка приложена к свободному концу в положительном направлении оси , то условие равновесия системы сходящихся сил балки дает нам
и
Следовательно, из выражений для изгибного момента и сдвиговой силы получаем
Интегрируя первое уравнение и применяя граничное условие при приходим к
Второе уравнение может быть переписано в виде
Интегрируя и применяя граничное условие при пишем
Осевое напряжение дается тогда выражением
Динамика балки Тимошенко
В теории изгиба балки Тимошенко без осевых эффектов отклонение балки предполагается заданным в виде
где — координаты точки балки, — компоненты вектора отклонения в трех координатных направлениях, — угол вращения нормали по отношению к срединной поверхности балки и — отклонение срединной поверхности в направлении оси .
Учитывая вышесказанное предположение теория изгиба балки Тимошенко (с допущением колебаний) может быть описано парой линейных уравнений в частных производных:[3]
где искомыми величинами являются (отклонение балки) и (угловое отклонение). Заметим, что в отличие от теории изгиба балок Эйлера-Бернулли угловое отклонение является отдельной переменной, а не приближается наклоном отклонения. Кроме того,
— называется коэффициентом сдвига Тимошенко, который зависит от формы балки. Для прямоугольного сечения балки .
— распределенная нагрузка (сила приложенная к единице длины).
Эти параметры не обязательно постоянные.
Дли линейной упругой изотропной однородной балки постоянного сечения эти два уравнения можно скомбинировть в следующее уравнение[4][5]
Вывод комбинированного уравнения изгиба балки Тимошенко
Уравнения, которым подчиняется изгиб однородной балки постоянного сечения по Тимошенко, имеют вид
Из уравнения (1) (предполагая достаточную гладкость) получаем
Из уравнения (3) (опять же при достаточной гладкости) можно написать
Дифференцируя уравнение (2) получаем
Из уравнений (4) и (6) пишем
Из уравнений (3) и (7) получаем
Подставляя уравнение (5) в уравнение (8) получаем
Преобразуя это уравнение получаем
Уравнение Тимошенко предсказывает наличие критической частоты Для нормальных мод уравнение Тимошенко может быть решено. Поскольку это уравнение четвертого порядка, то у него существует четыре независимых решения, два осцилляторных и два быстро затухающих при частоте ниже . Для частот выше все решения осцилляторны и, как следствие этого, возникает второй спектр.[6]
Осевые эффекты
Если отклонение балки задается в виде
где есть дополнительное отклонение в направлении оси , тогда основное уравнение изгиба балки по Тимошенко обретает вид
где и приложенная извне осевая сила. Любая внешняя осевая сила уравновешивается напряжением деформации
где — осевое напряжение. Толщина балки здесь считается равной .
Комбинированное уравнение изгиба балки с учетом осевой силы имеет вид
Затухание (демпфирование)
Если, помимо учета осевых сил, мы предположим также наличие демпфирующей силы, которая пропорциональна скорости в виде
то связанные основные уравнения изгиба балки Тимошенко становятся равными
а комбинированное уравнение приобретает вид
Подобный анзац для демпфирующей силы (похожий на силу вязкости) несколько нереалистичен поскольку вязкость приводит к независящей от частоты амплитудно-зависимой скорости затухания колебаний балки, тогда как эмпирические измерения показывают, что затухание слабо зависит от частоты и сильно зависит от амплитуды отклонения балки.
Коэффициент сдвига
Определить коэффициента сдвига не так-то просто, к тому же неоднозначно (существует несколько способов его определения). В целом он должен удовлетворять условию:
.
Коэффициент сдвига зависит от коэффициента Пуассона. Попытки получить точное выражение для него предпринимались многими учёными, включая Степана Прокофьевича Тимошенко,[7] Raymond D. Mindlin,[8] G. R. Cowper,[9] N. G. Stephen,[10] J. R. Hutchinson[11] и другими (см. также вывод уравнений изгиба балки Тимошенко с помощью теории изгиба балки основанной на вариационном-асимптотическом методе в книге Khanh C. Le[12] который приводит к различным сдвиговым коэффициентам в статическом и динамическом случаях). В инженерной практике выражений Тимошенко[13] вполне достаточно в большинстве случаев. В 1975 году Kaneko[14] опубликовал весьма хороший обзор по коэффициенту сдвига. Позднее новые экспериментальные данные показали, что коэффициент сдвига недооценивается.[15][16]
Согласно работе Cowper 1966 года для цельного прямоугольного сечения балки
↑Timoshenko, S. P., 1921, On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section, Philosophical Magazine, p. 744.
↑Timoshenko, S. P., 1922, On the transverse vibrations of bars of uniform cross-section, Philosophical Magazine, p. 125.
↑Thomson, W. T., 1981, Theory of Vibration with Applications, second edition. Prentice-Hall, New Jersey.
↑Rosinger, H. E. and Ritchie, I. G., 1977, On Timoshenko’s correction for shear in vibrating isotropic beams, J. Phys. D: Appl. Phys., vol. 10, pp. 1461—1466.
↑«Experimental study of the Timoshenko beam theory predictions», A. Díaz-de-Anda, J. Flores, L. Gutiérrez, R.A. Méndez-Sánchez, G. Monsivais, and A. Morales, Journal of Sound and Vibration, Volume 331, Issue 26, 17 December 2012, pp. 5732-5744.
↑Timoshenko, Stephen P., 1932, Schwingungsprobleme der Technik, Julius Springer.
↑Mindlin, R. D., Deresiewicz, H., 1953, Timoshenko’s Shear Coefficient for Flexural Vibrations of Beams, Technical Report No. 10, ONR Project NR064-388, Department of Civil Engineering, Columbia University, New York, N.Y.
↑Cowper, G. R., 1966, «The Shear Coefficient in Timoshenko’s Beam Theory», J. Appl. Mech., Vol. 33, No.2, pp. 335—340.
↑Stephen, N. G., 1980. «Timoshenko’s shear coefficient from a beam subjected to gravity loading», Journal of Applied Mechanics, Vol. 47, No. 1, pp. 121—127.
↑Hutchinson, J. R., 1981, «Transverse vibration of beams, exact versus approximate solutions», Journal of Applied Mechanics, Vol. 48, No. 12, pp. 923—928.
↑Le, Khanh C., 1999, Vibrations of shells and rods, Springer.
↑Stephen Timoshenko, James M. Gere. Mechanics of Materials. Van Nostrand Reinhold Co., 1972. pages 207.
↑Kaneko, T., 1975, «On Timoshenko’s correction for shear in vibrating beams», J. Phys. D: Appl. Phys., Vol. 8, pp. 1927—1936.
↑«Experimental check on the accuracy of Timoshenko’s beam theory», R. A. Méndez-Sáchez, A. Morales, J. Flores, Journal of Sound and Vibration 279 (2005) 508—512.
↑«On the Accuracy of the Timoshenko Beam Theory Above the Critical Frequency: Best Shear Coefficient», J. A. Franco-Villafañe and R. A. Méndez-Sánchez, Journal of Mechanics, January 2016, pp. 1-4. DOI: 10.1017/jmech.2015.104.
Похожие исследовательские статьи
Энтальпи́я — функция состояния термодинамической системы, определяемая как сумма внутренней энергии и произведения давления на объём :
(Определение энтальпии)
Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Лагранжиа́н, фу́нкция Лагра́нжа динамической системы, является функцией обобщённых координат и описывает развитие системы. Например, уравнения движения в этом подходе получаются из принципа наименьшего действия, записываемого как
Лагранжева механика — формулировка классической механики, введённая Луи Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Пове́рхность в геометрии и топологии — двумерное топологическое многообразие. Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности, которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.
Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно изменяющие её. К альтернативным теориям гравитации часто относят вообще любые теории, не совпадающие с общей теорией относительности хотя бы в деталях или как-то обобщающие её. Тем не менее, нередко теории гравитации, особенно квантовые, совпадающие с общей теорией относительности в низкоэнергетическом пределе, «альтернативными» не называют.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Цилиндрической системой координат называют трёхмерную систему координат, являющуюся расширением полярной системы координат путём добавления третьей координаты, которая задаёт высоту точки над плоскостью.
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Криволине́йная систе́ма координа́т, или криволине́йные координа́ты, — система координат в евклидовом (аффинном) пространстве, или в области, содержащейся в нём. Криволинейные координаты не противопоставляются прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства n. Наиболее известным примером криволинейной системы координат являются полярные координаты на плоскости.
Изгиб — в сопротивлении материалов вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев, изменение кривизны/искривление срединной поверхности пластины или оболочки. Изгиб связан с возникновением в поперечных сечениях бруса или оболочки изгибающих моментов. Прямой изгиб балки возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, изгиб называется косым.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Бимомент — физическая величина, изгибно-крутящий момент, образуется при нагрузке профиля, расположенного под углом или при неравномерной нагрузке на профиль.
Коприсоединённое представление группы Ли — это представление, сопряжённое к присоединённому. Если — алгебра Ли группы , соответствующее действие на пространстве , сопряжённом к , называется коприсоединённым действием. С геометрической точки зрения оно представляет собой действие левыми сдвигами на пространстве правоинвариантных 1-форм на .
Изгиб пластин в теории упругости относится к расчёту деформаций в пластинах, под действием перпендикулярных к плоскости пластины внешних сил и моментов. Величину отклонения можно определить, решив дифференциальные уравнения соответствующей теории пластин в зависимости от допущений на малость тех или иных параметров. По этим прогибам можно рассчитать напряжения в пластине. При известных напряжениях можно использовать теорию разрушения, чтобы определить, нарушение целостности плиты при данной нагрузке. Деформация пластины является функцией двух координат, поэтому теория пластин формулируется в общем случае в терминах дифференциальных уравнений в двумерном пространстве. Также считается, что пластина изначально имеет плоскую форму.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.