t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез, основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
F-тест или критерий Фишера — статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).

Гетероскедасти́чность — понятие, используемое в прикладной статистике, означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.

Коэффициент детерминации — это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости, то есть объясняющими переменными. Более точно — это единица минус доля необъяснённой дисперсии в дисперсии зависимой переменной. Его рассматривают как универсальную меру зависимости одной случайной величины от множества других. В частном случае линейной зависимости
является квадратом так называемого множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. В частности, для модели парной линейной регрессии коэффициент детерминации равен квадрату обычного коэффициента корреляции между y и x.
Авторегрессионная условная гетероскедастичность — применяемая в эконометрике модель для анализа временных рядов, у которых условная дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время, сменяясь затем периодами низкой волатильности, причём среднюю волатильность можно считать относительно стабильной.
Тест Ва́льда — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом отношения правдоподобия и тестом множителей Лагранжа. Тест является асимптотическим, то есть для достоверности выводов требуется достаточно большой объём выборки.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели.
Тест Уайта — универсальная процедура тестирования гетероскедастичности случайных ошибок линейной регрессионной модели, не налагающая особых ограничений на структуру гетероскедастичности, предложенная Уайтом в 1980 г. Тест является асимптотическим.
Тест Голдфелда — Квандта — процедура тестирования гетероскедастичности случайных ошибок регрессионной модели, применяемая в случае, когда есть основания полагать, что стандартное отклонение ошибок может быть пропорционально некоторой переменной. Тест также основывается на предположении нормальности распределения случайных ошибок регрессионной модели. Фактически это F-тест, поскольку статистика теста имеет распределение Фишера.
Метод инструментальных переменных — метод оценки параметров регрессионных моделей, основанный на использовании дополнительных, не участвующих в модели, так называемых инструментальных переменных. Метод применяется в случае, когда факторы регрессионной модели не удовлетворяют условию экзогенности, то есть являются зависимыми со случайными ошибками. В этом случае, оценки метода наименьших квадратов являются смещенными и несостоятельными.
Рекурсивный или рекуррентный метод наименьших квадратов (МНК) — применяемая в эконометрике итеративная процедура оценки параметров регрессионной модели. Данный метод применяется при мультиколлинеарности факторов. Также получающиеся в результате применения рекурсивного МНК используются при тестировании стабильности параметров модели.
Вне́шне несвя́занные уравне́ния — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Тест Глейзера — статистический тест, позволяющий оценить наличие (отсутствие) гетероскедастичности случайных ошибок регрессионной (эконометрической) модели.
Тест Парка - статистический тест, используемый для проверки гетероскедастичности случайных ошибок регрессионной (эконометрической) модели.
Тест ранговой корреляции Спирмена — непараметрический статистический тест, позволяющий проверить гетероскедастичность случайных ошибок регрессионной (эконометрической) модели. Особенность теста заключается в том, что не конкретизируется форма возможной зависимости дисперсии случайных ошибок модели от той или иной переменной.