Тетрахлорэтилен

Перейти к навигацииПерейти к поиску
Тетрахлорэтилен[1][2][3][4]
Изображение химической структуры Изображение молекулярной модели
Изображение молекулярной модели
Общие
Систематическое
наименование
1,1,2,2-​тетрахлорэтен
Традиционные названия перхлорэтилен
Хим. формулаC2Cl4
Рац. формула C2Cl4
Физические свойства
Состояние бесцветная жидкость
Молярная масса165,83 г/моль
Плотность1,6230 г/см³
Динамическая вязкость0,88·10-3 Па·с
Энергия ионизации9,32 эВ[6][7]
Термические свойства
Температура
 • плавления−22,4 °C
 • кипения121 °C
 • вспышки45 °C[5]
Критическая точка  
 • температура 340 °C
 • давление 44,3 атм
Уд. теплоёмк. 858 Дж/(кг·К)
Энтальпия
 • образования−51,1 кДж/моль
 • кипения34,7 кДж/моль
Давление пара1,86 кПа (20 °С)
Химические свойства
Растворимость
 • в воде 0,015 г/100 мл
Диэлектрическая проницаемость 2,20
Оптические свойства
Показатель преломления1,5044
Структура
Дипольный момент0 Кл·м[5]
Классификация
Рег. номер CAS127-18-4
PubChem
Рег. номер EINECS204-825-9
SMILES
InChI
RTECSKX3850000
ChEBI17300
Номер ООН1897
ChemSpider
Безопасность
Предельная концентрация 10 мг/м3
Токсичность При длительном контакте оказывает токсическое действие на ЦНС и печень
Фразы риска (R)R40, R51/53
Фразы безопасности (S)R23, R36/37, R61
Краткие характер. опасности (H)
H351, H411
Меры предостор. (P)
P273, P281
Пиктограммы СГСПиктограмма «Опасность для здоровья» системы СГСПиктограмма «Окружающая среда» системы СГС
NFPA 704
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Тетрахлорэтилен (перхлорэтилен) — бесцветная жидкость с резким запахом, хлорорганический растворитель. Широкое применение находит в химчистке и обезжиривании металлов.

Получение

Впервые тетрахлорэтилен был получен М. Фарадеем при термическом разложении гексахлорэтана[4].

В промышленности тетрахлорэтилен получают несколькими способами. Первый метод, игравший важное промышленное значение в прошлом, заключается в получении тетрахлорэтилена из ацетилена через трихлорэтилен. Хлорирование трихлорэтилена в жидкой фазе при температуре 70—110 °С в присутствии FeCl3 (0,1—1% масс.) даёт пентахлорэтан, который затем подвергают жидкофазному (80—120 °С, Ca(OH)2) или каталитическому термическому крекингу (170—330 °С, активированный уголь). Общий выход достигает 90—94% по ацетилену. Однако после повышения цен на ацетилен этот метод утратил своё значение[8].

Главным методом получения тетрахлорэтилена является окислительное хлорирование этилена или 1,2-дихлорэтана. Субстрат, кислород и хлор реагируют в присутствии катализатора (хлорид калия, хлорид меди(II) на силикагеле) при 420—460 °С. В результате серии реакций происходит образование трихлорэтилена и тетрахлорэтилена. Выход по хлору составляет 90—98%. Побочным процессом является окисление этилена до оксидов углерода, который ускоряется при превышении оптимальной температуры процесса. Продукты разделяются и очищаются перегонкой. Соотношение продуктов можно регулировать соотношением реагентов[9].

Высокотемпературное хлорирование углеводородов C1—C3 или их хлорпроизводных является вторым по важности источником тетрахлорэтилена. Он не требует чистого сырья и позволяет использовать отходы производства[10].

В 1985 году производство тетрахлорэтилена в США составило 380 тыс. тонн, в Европе — 450 тыс. тонн. Из-за оптимизации процесса химчистки и уменьшения выбросов вещества в атмосферу, а также по причине ужесточающихся экологических требований производство тетрахлорэтилена сокращалось с конца 1970-х годов. Уже в 1993 году объёмы производства в США оценивались в 123 тыс. тонн в год и 74 тыс. тонн в ФРГ[11].

Физические свойства

Тетрахлорэтилен негорюч, невзрывоопасен и не самовоспламеняется[1]. Он смешивается с большинством органических растворителей. С некоторыми растворителями тетрахлорэтилен образует азеотропные смеси.

Состав и температуры кипения азеотропных смесей тетрахлорэтилена[4]
Второй компонентМассовая доля тетрахлорэтиленаТ. кип. азеотропной смеси при 101,3 кПа, °С
вода15,987,1
метанол63,563,8
этанол63,076,8
пропанол-148,094,1
пропанол-270,081,7
бутанол-129,0109,0
бутанол-240,0103,1
муравьиная кислота50,088,2
уксусная кислота38,5107,4
пропионовая кислота8,5119,2
изомасляная кислота3,0120,5
ацетамид2,6120,5
пиррол19,5113,4
1,1,2-трихлорэтан43,0112,0
1-хлор-2,3-эпоксипропан51,5110,1
этиленгликоль6,0119,1

Химические свойства

Тетрахлорэтилен является самым устойчивым соединением из всех хлорпроизводных этана и этилена. Он устойчив к гидролизу и меньше способствует коррозии, чем другие хлорсодержащие растворители[4].

Окисление
Окисление тетрахлорэтилена на воздухе даёт трихлорацетилхлорид и фосген, процесс протекает под действием УФ-излучения:

Этот процесс может быть замедлен при использовании аминов и фенолов в качестве стабилизаторов (обычно применяют N-метилпиррол и N-метилморфолин). Процесс, однако, может использоваться для производства трихлорацетилхлорида[4].

Хлорирование
При реакции тетрахлорэтилена с хлором в присутствии небольшого количества хлорида железа(III) FeCl3 (0,1 %) в качестве катализатора при 50-80 °С образуется гексахлорэтан[12]:

По реакции тетрахлорэтилена с хлором и HF в присутствии SbF5 синтезируют фреон-113[1].

Гидролиз
Происходит только при нагревании в кислой среде (лучше всего с серной кислотой):

при этом образуется трихлоруксусная кислота.

Восстановление
Тетрахлорэтилен может быть частично или полностью восстановлен в газовой фазе в присутствии таких катализаторов как: никель, палладий, платиновая чернь и др.:

Применение

Около 60 % всего расходуемого тетрахлорэтилена находит применение как растворитель в химчистке. Тетрахлорэтилен заменил все другие растворители в этой области, поскольку он не горюч и может быть безопасно использован без особых мер предосторожности. Из-за своей устойчивости тетрахлорэтилен содержит низкий процент стабилизаторов и по этой же причине используется наряду с трихлорэтиленом и 1,1,1-трихлорэтаном для обезжиривания металлов, особенно, алюминия. В меньших количествах тетрахлорэтилен применяется в текстильной промышленности и производстве фреона-113[13][1].

В нефтепереработке тетрахлорэтилен наряду с дихлорэтаном применяется в процессе оксихлорирования (для восстановления активности) биметаллических катализаторов на установках каталитического риформинга и низкотемпературной изомеризации[14].

Токсичность

Перхлорэтилен токсичен.[15] При незначительном вдыхании паров перхлорэтилена появляется головокружение, после чего могут возникнуть признаки тошноты, склонность ко сну, падение артериального давление видимая припухлость надбровных дуг и щек, першение в горле, общая усталость, мнимое ощущение нехватки воздуха. При длительном воздействии паров перхлорэтилена возможен обморок. При попадании на кожу перхлорэтилен оставляет ожог, и возникают трещины на месте воздействия, при длительном воздействии может развиться атопический дерматит. При попадании в глаза необходимо промыть водой и обратиться в токсикологический центр.

Концентрация паров перхлорэтилена так же влияет на вкусовые рецепторы.

А так же, запрещено принимать пищу, держать продукты в непосредственной близости от источника, так как они могут пропитаться парами растворителя.

Примечания

  1. 1 2 3 4 Химическая энциклопедия / Под ред. И. Л. Кнунянца. — М.: Большая Российская энциклопедия, 1992. — Т. 4. — С. 557. — ISBN 5-85270-039-8.
  2. Dean J. A. Lange's Handbook of Chemistry. — McGraw-Hill, 1999. — ISBN 0-07-016384-7.
  3. Sigma-Aldrich. Tetrachloroethylene, anhydrous. Дата обращения: 24 апреля 2013. Архивировано 28 апреля 2013 года.
  4. 1 2 3 4 5 Ullmann, 2006, p. 75.
  5. 1 2 CRC Handbook of Chemistry and Physics (англ.) / W. M. Haynes — 95 — Boca Raton: CRC Press, 2014. — P. 15—21. — ISBN 978-1-4822-0868-9
  6. http://www.cdc.gov/niosh/npg/npgd0599.html
  7. David R. Lide, Jr. Basic laboratory and industrial chemicals (англ.): A CRC quick reference handbookCRC Press, 1993. — ISBN 978-0-8493-4498-5
  8. Ullmann, 2006, p. 76.
  9. Ullmann, 2006, p. 74, 76.
  10. Ullmann, 2006, p. 77—78.
  11. Ullmann, 2006, p. 79—80.
  12. Ошин Л.А. Промышленные хлорорганические продукты. — М.: Химия, 1978. — 656 с.
  13. Ullmann, 2006, p. 79.
  14. |ISOFORM™Isomerization Grade/ Reforming Grade. Дата обращения: 13 апреля 2020. Архивировано 22 октября 2020 года.
  15. |Паспорт безопасности перхлорэтилена. Дата обращения: 21 мая 2022. Архивировано 16 ноября 2017 года.

Литература

  • Rossberg M., Lendle W., Pfleiderer G., Tögel A., Dreher E.-L., Langer E., Rassaerts H., Kleinschmidt P., Strack H., Cook R., Beck U., Lipper K.-A., Torkelson T. R., Löser E., Beutel K. K., Mann T. Chlorinated Hydrocarbons // Ullmann's Encyclopedia of Industrial Chemistry. — Wiley, 2006. — doi:10.1002/14356007.a06_233.pub2.
  • U.S. Department of Health and Human Services. Toxicological profile for tetrachloroethylene (1997). Дата обращения: 24 апреля 2013. Архивировано 28 апреля 2013 года.