
, в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы. Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

Сингони́я — классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат ; группы симметрии с единой координатной системой объединяются в одну сингонию. Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.
Кристаллографическая группа — дискретная группа движений
-мерного евклидова пространства, имеющая ограниченную фундаментальную область.

Кристалли́ческая структу́ра — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причём все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.
Символы Шёнфлиса — одно из обозначений точечных групп симметрии, наряду с символами Германа — Могена. Предложены немецким математиком Артуром Шёнфлисом в книге «Kristallsysteme und Kristallstruktur» в 1891. Могут также использоваться для обозначения пространственных групп.
Кристаллографические группы, или фёдоровские группы — набор групп симметрий, которые описывают все возможные симметрии бесконечного количества периодически расположенных точек в трёхмерном пространстве. Эта классификация симметрий была сделана независимо и почти одновременно русским математиком Фёдоровым и немецким математиком Шёнфлисом. Полученные сведения играют большую роль в кристаллографии.

Четырёхмерное пространство — математический объект, обобщающий свойства трёхмерного пространства. Его не следует путать с четырёхмерным пространством-временем теории относительности.
Кристаллографическая точечная группа симметрии — это точечная группа симметрии, которая описывает макросимметрию кристалла. Поскольку в кристаллах допустимы оси только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.
Символы Германа — Могена используются для обозначения симметрии точечных групп, плоских групп и пространственных групп. Были предложены немецким кристаллографом Карлом Германом в 1928 году и модифицированы французским минералогом Шарлем-Виктором Могеном в 1931 году. Также называются международными символами, поскольку используются в Интернациональных Таблицах по Кристаллографии, начиная с их первого издания в 1935 году. До этого для обозначения точечных и пространственных групп пользовались, как правило, символами Шёнфлиса.
Группа симметрии некоторого объекта ― группа всех преобразований, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.

Диаграмма Коксетера — Дынкина — это граф с помеченными числами рёбрами, представляющими пространственные связи между набором зеркальных симметрий . Диаграмма описывает калейдоскопичное построение — каждая «вершина» графа представляет зеркало, а метки ветвей задают величину двугранного угла между двумя зеркалами . Непомеченные ветви неявно подразумевают порядок 3.
Группы сферической симметрии также называются точечными группами в трёхмерном пространстве, однако эта статья рассматривает только конечные симметрии. Существует пять фундаментальных классов симметрии, которыми обладают треугольные фундаментальные области: диэдрическая, циклическая, тетраэдральная симметрия, октаэдральная симметрия и икосаэдральная симметрия.

Эта страница содержит список правильных многомерных многогранников (политопов) и правильных cоединений этих многогранников в евклидовом, сферическом и гиперболическом пространствах разных размерностей.
В статье суммируется информация о классах дискретных групп симметрии евклидовой плоскости. Группы симметрии, приведённые здесь, именуются по трём схемам именования: международная нотация, орбифолдная нотация и нотация Коксетера. Существует три вида групп симметрии на плоскости:
- 2 бесконечных семейства точечных групп
- 7 групп бордюра – 2D-рёберные группы
- 17 групп обоев – 2D-пространственные группы.
Точечная группа в трёхмерном пространстве — группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.

Группа бордюра — это математическое понятие, используемое для классификации согласно симметриям узоров на двумерных поверхностях, повторяющихся в одном направлении. Такие узоры встречаются часто в архитектуре и декоративном искусстве. Математическое изучение таких узоров показывает, что существует в точности семь типов симметрии.

Группа орнамента — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Симметрии в квантовой механике — преобразования пространства-времени и частиц, которые оставляют неизменными уравнения квантовой механики. Рассматриваются во многих разделах квантовой механики, которые включают релятивистскую квантовую механику, квантовую теорию поля, стандартную модель и физику конденсированного состояния. В целом, симметрия в физике, законы инвариантности и сохранения являются основополагающими ограничениями для формулирования физических теорий и моделей. На практике это мощные методы решения задач и прогнозирования того, что может случиться. Хотя законы сохранения не всегда дают конечное решение проблемы, но они формируют правильные ограничения и наметки к решению множества задач.

Число симметрии или порядок симметрии объекта — это количество различных, но неразличимых пространственных расположений объекта, то есть порядок его группы симметрии. Объектом может быть молекула, кристаллическая решётка, мозаика или вообще любой математический объект в N-мерном пространстве.

Молекулярная симметрия — это фундаментальная концепция химии, описывающая и классифицирующая симметрию молекулы, используемая для предсказания или объяснения химических свойств молекул. Например, таких как дипольный момент и разрешённые спектроскопические переходы. Изучение молекулярной симметрии основано на теории групп. Состояние молекулы классифицируется с помощью неприводимых представлений из таблицы характеров группы симметрии молекулы.