
Скаля́рное произведе́ние — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат. Используется в определении длины векторов и угла между ними.
Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.

Трикли́нная сингони́я — одна из семи сингоний в кристаллографии. Её элементарная ячейка определяется тремя базовыми векторами (трансляциями) разной длины, все углы между которыми не являются прямыми. Таким образом, форма ячейки определяется шестью параметрами: длинами базовых векторов a, b и c и углами между ними α, β и γ. Объём ячейки равен 

Монокли́нная сингони́я — в кристаллографии одна из семи сингоний. Элементарная ячейка моноклинной сингонии строится на трёх векторах a, b и c, имеющих разную длину, с двумя прямыми и одним непрямым углами между ними. Таким образом, форма ячейки определяется четырьмя параметрами: длинами базовых векторов a, b и c и углом β, отличающимся от прямого угла. Объём ячейки равен произведению 
Решётка Браве́ — понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Огюста Браве. Решёткой или системой трансляций Браве называется набор элементарных трансляций или трансляционная группа, которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией.
Ромби́ческая сингони́я — одна из семи сингоний в кристаллографии. Её элементарная ячейка определяется тремя базовыми векторами (трансляциями), которые перпендикулярны друг другу, но не равны между собой. Таким образом, форма ячейки, представляющей собой прямоугольный параллелепипед и определяется тремя параметрами: длинами базовых векторов a, b и c. Объём ячейки равен произведению abc.

В кристаллографии куби́ческая сингони́я — одна из семи сингоний. Элементарная ячейка кристалла кубической сингонии определяется тремя векторами равной длины a, перпендикулярными друг другу. Объём ячейки равен a3.
Тетрагона́льная cингони́я — одна из семи cингоний в кристаллографии. Элементарная ячейка определяется тремя базовыми векторами; два из трёх базовых векторов имеют одинаковую длину, а третий отличается от них. Все три вектора перпендикулярны друг другу. Таким образом, форма ячейки определяется двумя параметрами: длинами базовых векторов a и c. Объём ячейки равен a2c.

Сингони́я — классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат ; группы симметрии с единой координатной системой объединяются в одну сингонию. Кристаллы, принадлежащие к одной и той же сингонии, имеют подобные углы и рёбра элементарных ячеек.
Кристаллографическая группа — дискретная группа движений
-мерного евклидова пространства, имеющая ограниченную фундаментальную область.

Поворо́т (враще́ние) — движение плоскости или пространства, при котором по крайней мере одна точка остаётся неподвижной.

Тригонометрические тождества — математические выражения для тригонометрических функций, которые выполняются при всех значениях аргумента. В данной статье приведены только тождества с основными тригонометрическими функциями, но есть тождества и для редко используемых тригонометрических функций.

Ромбоэдр — это геометрическое тело, являющееся обобщением куба, у которого грани не обязательно квадратны, а лишь являются ромбами. Ромбоэдр является параллелепипедом, в котором все рёбра равны. Ромбоэдр можно использовать для определения ромбоэдрической решётчатой системы, сот с ромбоэдрическими ячейками.

Постоя́нная решётки, или параметр решётки — размеры элементарной кристаллической ячейки кристалла. В общем случае элементарная ячейка представляет собой параллелепипед с различными длинами рёбер, обычно эти длины обозначают как a, b, c. Но в некоторых частных случаях кристаллической структуры дли́ны этих рёбер совпадают. Если к тому же выходящие из одной вершины рёбра равны и взаимно перпендикулярны, то такую структуру называют кубической. Структуру с двумя равными рёбрами, находящимися под углом 120 градусов, и третьим ребром, перпендикулярным им, называют гексагональной.
Ма́трицей поворо́та называется ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице.

Треуго́льник — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью.
История тригонометрии как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Исторический термин «решение треугольников» обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника, а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере, на гиперболической плоскости и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.