Моля́рный объём Vm — отношение объёма вещества к его количеству, численно равен объёму одного моля вещества. Термин «молярный объём» может быть применён к простым веществам, химическим соединениям и смесям. В общем случае он зависит от температуры, давления и агрегатного состояния вещества. Молярный объём также можно получить делением молярной массы M вещества на его плотность ρ: таким образом, Vm = V/n = M/ρ. Молярный объём характеризует плотность упаковки молекул в данном веществе. Для простых веществ иногда используется термин атомный объём.
Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму или как производная массы по объёму:
.

Теплопрово́дность — способность материальных тел проводить тепловую энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора. Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества. Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.
Уравне́ние состоя́ния идеа́льного га́за — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:
,

Зако́н Берну́лли устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости.

Психро́метр тж. Гигрометр психрометри́ческий — содержащее сухой и смоченный термометры устройство для косвенного измерения влажности газов, прежде всего воздуха, по понижению температуры смоченного твёрдого тела — датчика температуры; влажность газа вычисляют посредством психрометрической формулы по разности температур сухого и смоченного термометров.
Температуропрово́дность — физическая величина, характеризующая скорость изменения (выравнивания) температуры вещества в неравновесных тепловых процессах. Численно равна отношению теплопроводности к удельной теплоёмкости при постоянном давлении.
Число или критерий Пекле — критерий подобия, который характеризует соотношение между конвективными и молекулярными процессами переноса тепла в потоке жидкости, а также является критерием подобия для процессов конвективного теплообмена.
Число Прандтля — один из критериев подобия тепловых процессов в жидкостях и газах, учитывает влияние физических свойств теплоносителя на теплоотдачу:


Гравитацио́нная неусто́йчивость — нарастание со временем пространственных флуктуаций скорости и плотности вещества под действием сил тяготения.
Классическое вириальное разложение выражает давление многочастичной системы, находящейся в термодинамическом равновесии, в виде степенного ряда по плотности. Вириальное разложение было впервые использовано в 1901 году Камерлинг-Оннесом как обобщение закона идеального газа. Он записал для газа, состоящего из
атомов или молекул, формулу

Уда́рная адиабата, или адиаба́та Гюгонио́, адиабата Ра́нкина — Гюгонио́ — математическое соотношение, связывающее термодинамические величины до ударной волны и после. Таким образом, ударная адиабата не описывает сам процесс в ударной волне.
Абсолютная влажность воздуха — физическая величина, показывающая массу водяных паров, содержащихся в 1 м³ воздуха. Другими словами, это плотность водяного пара в воздухе. Обычно обозначается буквой
.
Уравнение состояния Бенедикта — Вебба — Рубина — многопараметрическое уравнение состояния, полученное в работах 1940—42 годов Мэнсоном Бенедиктом, Джорджем Веббом (Уэббом) и Льюисом Рубином в ходе улучшения уравнения Битти — Бриджмена. Уравнение было получено корреляцией термодинамических и волюметрических данных жидких и парогазообразных лёгких углеводородов, а также их смесей. Уравнение, в отличие от уравнения Редлиха — Квонга, не является кубическим относительно коэффициента сжимаемости
, однако при этом структура уравнения Бенедикта — Вебба — Рубина позволяет описывать состояние широкого класса веществ.
Сжимаемость — свойство вещества изменять свой объём под действием всестороннего равномерного внешнего давления. Сжимаемость характеризуется коэффициентом сжимаемости, который определяется формулой

Адиабати́ческий градие́нт температу́ры — вертикальный градиент температуры в идеальном газе, находящемся в состоянии гидростатического равновесия в поле силы тяжести в адиабатических условиях.
В технике, физике и химии изучение явлений переноса касается обмена массой, энергией, зарядом, импульсом и угловым моментом в исследуемых системах. Хотя явления переноса опираются на такие разные области, как механика сплошных сред и термодинамика, в них уделяют большое внимание общности между рассматриваемыми темами. Перенос массы, количества движения и тепла имеет очень схожую математическую основу, и параллели между ними используются при изучении явлений переноса для выявления глубоких математических связей, которые часто предоставляют очень полезные инструменты для анализа одной области, которые напрямую выводятся из других.